Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) TH dong dang: goc - goc.
b) Chung minh tam giac CDF dong dang tam giac CBA roi suy ra CD.CA=CF.CB
c) Tam giac BDF dong dang tam giac BCG (goc-goc)
=> BD.BG=BF.CB
=> CD.CA+BD.BG=CF.CB+BF.CB=BC2khong phu thuoc D
a) tam giac ABE=DBE (canh huyen -canh goc vuong )
(chac la biet lam nhi?)
b) vi tam giac ABE=tam giac DBE
=>AE=ED
va goc ABE =goc EBD hay goc FBE= goc CBE
xet tam giac FAE va tam giac CDE co:
AE=ED(cmt)
goc FAE=goc CDE(=90)
goc AEF =goc CED(doi dinh)
=>tam giac FAE=tam giac CDE(g.c.g)
=> EF=EC
c)ta co:BD=AB(cmt)
=>B cach deu 2 đầu mút đoạn thẳng AD
=>B thuộc đường trung trực của AD (1)
lai co:AE=ED(cmt)
=>E cach deu 2 đầu mút đoạn thẳng AD
=>E thuộc đường trung trực của AD (2)
tu (1) va (2) =>BE la duong trung truc cua AD
Trả lời 2 câu đầu nha, 2 câu sau tí nữa mình viết sau
a, \(\Delta ABC\)cân tại A có: AH là đường cao của \(\Delta ABC\)\(\Rightarrow\)AH là trung tuyến của \(\Delta ABC\)\(\Rightarrow BH=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)
\(\Delta ABH\)có \(\widehat{AHB}=90^o\)
\(\Rightarrow AB^2=AH^2+BH^2\)(định lý Py-ta-go)
hay \(10^2=AH^2+6^2\)
\(AH^2=64\)
\(AH=8\left(cm\right)\)
b, \(\Delta ABC\)có: \(HD//AC\left(gt\right)\)
\(BH=HC\left(cmt\right)\)
\(\Rightarrow BD=DA\)
\(\Delta ABH\)vuông tại H có: HD là trung tuyến của \(\Delta ABH\)\(\Rightarrow HD=BD=DA=\frac{AB}{2}\)
\(\Delta BDH\)có: \(HD=BD\left(cmt\right)\)\(\Rightarrow\Delta BDH\)cân tại D
c, Nối D với C, H với E
Ta có: \(HD=BD\left(cmt\right)\\ BD=CE\left(gt\right)\)\(\Rightarrow HD=CE\)
Tứ giác DHEC có: \(HD//EC\left(gt\right)\\ HD=EC\left(cmt\right)\)\(\Rightarrow\)DHEC là hình bình hành \(\Rightarrow\)2 đường chéo DE và HC cắt nhau tại trung điểm của mỗi đường \(\Rightarrow\)I là trung điểm của DE
d,
a) \(\Delta BEC\)và \(\Delta CDB\)có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
\(\widehat{BEC}=\widehat{BDC}=90^0\)
\(\Delta BEC=\Delta CDB\left(g-c-g\right)\)
\(\Rightarrow BE=CD\). Mặt khác AB=CD (gt) nên ta có AE=AD\(\Rightarrow\Delta AED\)cân tại A
b) \(\Delta AED\)cân tại A \(\Rightarrow\widehat{AED}=\frac{180^0-\widehat{EAD}}{2}\left(1\right)\)
\(\Delta ABC\)cân tại A \(\Rightarrow\widehat{EBC}=\frac{180^0-\widehat{EAD}}{2}\left(2\right)\)
Từ (1) và(2) ta có \(\widehat{AED}=\widehat{EBC}\)mà 2 góc ở vị trí đồng vị nên \(DE//BC\)
c) \(\Delta DEB\)và \(\Delta EDC\)có
DE chung
BE=DC(cmt)
BD=CE (\(\Delta BEC=\Delta CDB\))
\(\Delta DEB=\Delta EDC\left(c-c-c\right)\) \(\Rightarrow\widehat{EBD}=\widehat{DCE}\)
Mặt khác \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{IBC}=\widehat{ICB}\Rightarrow\Delta IBC\)cân tại I nên IB=IC
a) * Chứng minh EA.EB = ED.EC
- Chứng minh Δ EBD đồng dạng với Δ ECA (gg)
- Từ đó suy ra EB/EC = ED/EA → EA.EB = ED.EC
* Chứng minh góc EAD = góc ECB
- Chứng minh Δ EAD đồng dạng với Δ ECB (cgc)
- Suy ra góc EAD = góc ECB
b) - Từ góc BMC = 120o → góc AMB = 60o → góc ABM = 30o
- Xét Δ EDB vuông tại D có góc B = 30o
→ ED = 1/2 EB
- Lý luận cho SEAD/SECB = (ED/EB)2 từ đó SECB = 144 cm2
c) - Chứng minh BMI đồng dạng với Δ BCD (gg)
- Chứng minh CM.CA = CI.BC
- Chứng minh BM.BD + CM.CA = BC2 có giá trị không đổi
Cách 2: Có thể biến đổi BM.BD + CM.CA = AB2 + AC2 = BC2
d) - Chứng minh Δ BHD đồng dạng với Δ DHC (gg)
→ BH/DH = BD/DC → 2BP/2DQ = BD/DC → BP/DQ = BD/DC
- Chứng minh Δ DPB đồng dạng với Δ CQD (cgc)
→ góc BDP = góc DCQ mà góc BDP + góc PDC = 900 → CQ ⊥ P