K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

a) Áp dụng định lý Py-ta-go , xét tam giác vuông BAC có :

AB2 + AC2 = BC2 

=> 9+ 122 = BC2

=> 81 + 144= BC2 

=> 225 = BC2 

=> BC = căn 225 

=> BC = 15 cm

b)Xét tam giác ABD và tam giác MBD có :

 Góc BAD = góc BMD = 90 độ                 (1)

BD : cạnh chung                (2)

Góc 

28 tháng 4 2018

b) Xét tam giác ABD  và tam giác MBD có :

 Góc BAD = góc BMD = 90 đô ( GT )               (1)

BD : cạnh chung             (2)

Góc ABD = góc BMD ( vì tia BD là tia phân giác )          (3)

Từ (1) ; (2) và (3) => tam giác ABD = tam giác MBD ( cạnh huyền - góc nhọn )

a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)

                                  hay 92 + 122 = BC2

=> BC2 = 81 + 144 = 225 => BC = \(\sqrt{225}=15cm\)

trong tam giác ABC có: AB < AC < BC

                          => góc C < góc B < góc A (định lý)

b) xét tam giác ABD và tam giác MBD có:

           góc A = góc M = 900 (gt)

                BD chung

          góc B1 = góc B2 (gt)

=> tam giác ABD = tam giác MBD (ch-gn)

c) xét tam giác ADE và tam giác MCD có:

           góc A = góc M = 900 (gt)

               AD = DM (tam giác ABD = tam giác MBD)

            góc ADE = góc MDC (đối đỉnh)

=> tam giác ADE = tam giác MDC (g.c.g)

        => AE = MC (cạnh tương ứng)

ta có: BE = BA + AE

          BC = BM + MC

mà BA = BM (tam giác ở câu a)

      AE = MC (cmt)

=> BE = BC

=> tam giác BEC cân tại E

17 tháng 5 2016

câu d đâu bạn

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

25 tháng 4 2019

trả lời hô mình cái mn ơi

11 tháng 2 2021

a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)

                                  hay 92 + 122 = BC2

=> BC2 = 81 + 144 = 225 => BC = √225=15cm225=15cm

trong tam giác ABC có: AB < AC < BC

                          => góc C < góc B < góc A (định lý)

b) xét tam giác ABD và tam giác MBD có:

           góc A = góc M = 900 (gt)

                BD chung

          góc B1 = góc B2 (gt)

=> tam giác ABD = tam giác MBD (ch-gn)

c) xét tam giác ADE và tam giác MCD có:

           góc A = góc M = 900 (gt)

               AD = DM (tam giác ABD = tam giác MBD)

            góc ADE = góc MDC (đối đỉnh)

=> tam giác ADE = tam giác MDC (g.c.g)

        => AE = MC (cạnh tương ứng)

ta có: BE = BA + AE

          BC = BM + MC

mà BA = BM (tam giác ở câu a)

      AE = MC (cmt)

=> BE = BC

=> tam giác BEC cân tại E

hok tốt

17 tháng 5 2018

â) Áp dụng định lý pytago thuận vào \(\Delta ABC\)vuông tại A  ,co :

           \(BC^2=AB^2+AC^2\)

           \(BC^2=9^2+12^2\)

            \(BC^2=81+144\)

            \(BC^2=225\)

            \(BC=\sqrt{25}\)

             \(BC=15\left(cm\right)\)

b) Câu b này bạn viết sai đề nha ,( tia phân giác của gocB cắt AC tại D) mới đúng nha :)

 Xét : \(\Delta ABDva\Delta MBD,co:\)

\(\widehat{A}=\widehat{M}=90^o\)

BD là cạnh chung 

\(\widehat{B_1}=\widehat{B_2}\) (       BM là tia phân giác (gt)       ) 

Do do : \(\Delta ABD=\Delta MBD\) ( cạnh huyền - cạnh góc vuông ) 

c) 

Xét : \(\Delta AEDva\Delta MCD,co:\)

\(\widehat{A}=\widehat{M}=90^o\)

\(\widehat{D_1}=\widehat{D_2}\) ( hai góc đối đỉnh ) 

AD = AM ( hai cạnh tương ứng của hai tam giác bằng nhau ) 

Do do : \(\Delta AED=\Delta MCD\) ( g - c -g )

=> AE = MC ( hai cạnh tương ứng )  ( 1 ) 

mà :

BA = BM ( hai cạnh tương ứng của hai tam giác bằng nhau ) ( 2 ) 

BE = BA + AE   ( vì A nằm giữa B và E )   ( 3 ) 

BC = BM + MC ( vì M nằm giữa B và C )   ( 4 )

Từ ( 1 ) , ( 2 ) , ( 3 ) vả ( 4 ) suy ra BE = BC 

=> \(\Delta BEC\) cân tại B ( hai cạnh bên bằng nhau ) 

HÌNH MÌNH VẼ HƠI XẤU NHA :) 

CHÚC BẠN HỌC TỐT !!! 

18 tháng 5 2018

\(\sqrt{25}\)mà bằng 15 à

28 tháng 4 2019

a) 

áp dụng định lí pi-ta-go vào tam giác vuông ABC ta có :

          BC= AB2 + AC2

     => BC2 = 92 + 122

     => BC2 = 81 + 144

     => BC2 = 225

     => BC= 152

     => BC = 15

b)

Xét tam giác ABD và tam giác MBD có :

cạnh BD chung ( đề bài đã cho )

góc BAD = góc BMD = 90( đề bài đã cho )

góc ABD = góc MBD ( đề bài đã cho )

=> tam giác ABD = tam giác MBD

    ( cạnh huyền - góc nhọn )

                    Vậy : a) BC = 15 cm

                             b) tam giác ABD = tam giác MBD

chúc cậu học tốt

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0