Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho Δ ABC vuông tại A, AB = 9cm, AC = 12cm, đường cao AH, phân giác BD. Vẽ DC ⊥ BC, đường thẳng DE cắt đường thẳng AB tại F
a) Tính BH, CH
Ap dung dl Pytago vao trong tam giac vuong ABC ta co:
BC^2 = AB^2 + AC^2
=> BC = 15
AH la duong cao trong tam giac vuong ABC
=> 1/AH^2 = 1/AB^2 + 1/AC^2
=> AH = 7,2
Ap dung dl PYtago vao trong tam giac vuong AHB ta duoc:
BH^2 = AB^2 - AH^2
=> BH = 5,4
BC = BH + HC
=> HC = 9,6
b) Chứng minh Δ EBF đồng dạng Δ EDC
Tam giac EDC dong dang tam giac ADF(g,g,g)
=> Goc AFD = goc ECD
Ma AFD = 90 - goc B
=> Goc EDC = Goc B
Xet tam giac vuong EBF va tam giac vuong EDC ta co:
+) Goc A1 = goc E = 90
+) Goc B = Goc EDC
+) Goc BFE = Goc C
=> Δ EBF đồng dạng Δ EDC
Bài 26 : Bài giải
a. Do AB⊥AC,HE⊥AB,HF⊥ACAB⊥AC,HE⊥AB,HF⊥AC
⇒ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o
→◊AEHF→◊AEHF là hình chữ nhật
→AH=EF
Mấy câu khác chưa học !
) Chứng minh Δ EBF đồng dạng Δ EDC Tam giac EDC dong dang tam giac ADF(g,g,g)=> Goc AFD = goc ECD Ma AFD = 90 - goc B => Goc EDC = Goc BXet tam giac vuong EBF va tam giac vuong EDC ta co:+) Goc A1 = goc E = 90+) Goc B = Goc EDC+) Goc BFE = Goc C=> Δ EBF đồng dạng Δ EDC
Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
a)
Xét tam giác ABC ta có
\(AB^2+AC^2=BC^2\)(định lý py ta go)
144 + 256 = BC2
400 = BC2
BC = 20 ( cm )
Xét tam giác ABC có
BD là đường phân giác của tam giác
nên AD/DC = AB/BC = 16/20 = 4/5
có AD + DC = AC = 16
dễ tìm ra AD = 64/9 (cm)
DC = 80/9 (cm)
b) xét 2 tam giác HBA và ABC
có góc ABC chung
2 góc AHB và CAB bằng nhau cùng bằng 90 độ
nên 2 tam giác HAB và ABC đồng dạng với nhau
c)
có 2 tam giác HAB và ABC đồng dạng với nhau
nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)
d)
có E là hình chiếu của của C trên BD
nên \(CE\perp BD\)
suy ra \(\widehat{BEC}=90^0\)
xét 2 tam giác BHK và BEC
có \(\widehat{BHK}=\widehat{BEC}=90^0\)
\(\widehat{CEB}\)chung
nên 2 tam giác BHK và BEC đồng dạng với nhau
suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)
có 2 tam giác HAB và ABC đồng dạng với nhau
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)
từ (1) và (2) suy ra
\(AB^2=BK\cdot BE\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
b: ΔHAB vuông tại H có HM vuông góc AB
nên MH^2=MA*MB
ai đó làm ơn giải hộ mình bài này với
a) Áp dụng định lý PYTAGO vào tam giác ABC có
BC^2=AB^2+AC^2
= 9^2+12^2=225
BC= 15
Sabc= 1/2.AB.AC = 54 mà Sabc = 1/2.AH.BC
=> 1/2.AH = Sabc: BC = 3.6=> AH =7,2