Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác abc vuông tại h
theo đlí Pitago co
\(bc=\sqrt{ab^2+ac^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)
vậy bc=10cm
b,xét tam giác abcvà tam giác hab có
góc bac= góc bha= 90 độ(gt)
góc b chung
=>tam giác abc đồng dạng vs tam giác hba(gg)
c,từ cmb có tam giác abc đồng dạng vs tam giác hba
=>\(\frac{ab}{bh}=\frac{bc}{ab}\Rightarrow ab.ab=bh.bc\Rightarrow ab^2=bh.bc\)
a) Dựa vào định lý Pytago , ta tính được BC = 10 cm
b) tam giác HBA đồng dạng với tam giác ABC theo trường hợp g.g
c) từ hai tam giác đồng dạng nêu trên
=>\(\frac{BH}{AB}=\frac{AB}{BC}\)
=>\(AB^2=BH.BC\left(đpcm\right)\)
ta tính được BH= 3.6 cm
e) \(AH\perp BC\)(giả thiết).
\(\Rightarrow\Delta HAB\)vuông tại H.
\(\Rightarrow S_{HAB}=\frac{AH.BH}{2}=4,8.\frac{30}{14}=\frac{144}{14}=\frac{72}{7}\left(cm^2\right)\)
Xét \(\Delta ABC\)có phân giác BD (giả thiết).
\(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\)(tính chất).
\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{BC+AB}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+AB}\)
\(\Rightarrow\frac{AD}{8}=\frac{6}{10+6}=\frac{6}{16}=\frac{3}{8}\)(thay số).
\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)
Vì \(\Delta ABC\)vuông tại A (giả thiết).
\(\Rightarrow\widehat{CAB}=90^0\Rightarrow\widehat{DAB}=90^0\)
\(\Rightarrow\Delta ADB\)vuông tại A.
\(\Rightarrow S_{ADB}=\frac{AD.AB}{2}=\frac{3.6}{2}=9\left(cm^2\right)\)
Ta có: \(S_{ABC}=\frac{AB.AC}{2}\)(theo câu a))
\(\Rightarrow S_{ABC}=\frac{6.8}{2}=\frac{48}{2}=24\left(cm^2\right)\)
Lại có: \(S_{ABD}+S_{BCD}=S_{ABC}\)
\(\Rightarrow9+S_{BCD}=24\)(thay số).
\(\Rightarrow S_{BCD}=24-9=15\left(cm^2\right)\)
Vậy \(S_{HAB}=\frac{72}{7}cm^2;S_{BCD}=15cm^2\)
a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ
\(BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2=100\)
\(BC=10\)
b, Xét tam giác ABC và tam giác AHB có
góc BAC=góc BHA=90độ
b góc chung
=> tam giác ABC đồng dạng với tam giác HBA ( gg)
c => \(\frac{AB}{HB}=\)\(\frac{BC}{BA}\) => \(AB^2=HB.BC\)
a) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\) \(BC=\sqrt{100}=10\)
b) Xét \(\Delta HAB\)và \(\Delta HCA\)có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{HAB}=\widehat{HCA}\) (cùng phụ với góc HAC)
suy ra: \(\Delta HAB~\Delta HCA\)(g.g)
c) Xét \(\Delta ABH\)và \(\Delta CBA\)có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{B}\) CHUNG
suy ra: \(\Delta ABH~\Delta CBA\) (g.g)
\(\Rightarrow\)\(\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Rightarrow\)\(BH.BC=AB^2\) (1)
\(BE=BC-CE=10-4=6\) \(\Rightarrow\)\(BE=AB\) \(\Rightarrow\)\(BE^2=AB^2\) (2)
Từ (1) và (2) suy ra: \(BE^2=BH.BC\)
d) \(S_{ABC}=\frac{AB.AC}{2}=24\)
\(\Delta ABC\) có \(BD\)là phân giác \(\widehat{ABC}\)
\(\Rightarrow\)\(\frac{S_{BAD}}{S_{BDC}}=\frac{AB}{BC}=\frac{3}{5}\)
\(\Rightarrow\)\(\frac{S_{BAD}}{3}=\frac{S_{BDC}}{5}=\frac{S_{BAD}+S_{BDC}}{3+5}=\frac{S_{ABC}}{8}=3\)
\(\Rightarrow\)\(S_{BAD}=9\)
Xét \(\Delta ABD\)và \(\Delta EBD\) có:
\(AB=EB\) (câu c)
\(\widehat{ABD}=\widehat{EBD}\) (gt)
\(BD:\)chung
suy ra: \(\Delta ABD=\Delta EBD\) (c.g.c)
\(\Rightarrow\)\(S_{ABD}=S_{EBD}=9\)
\(\Rightarrow\)\(S_{CED}=S_{ABC}-S_{ABD}-S_{EBD}=6\)
p/s: tính diện tích CED còn cách khác, bn dễ dàng c/m tgiac CED ~ tgiac CAB, đến đây thì lm típ nha,
Áp dụng định lí py ta go vào
\(\Delta\)ABC, ta có
\(BC^2=AB^2+AC^2\)\(\Rightarrow BC^2=8^2+15^2\)\(\Rightarrow BC^2=64+225=289\)\(\Rightarrow BC=\sqrt[2]{289}\left(cm\right)\)