K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí py ta go vào

\(\Delta\)ABC, ta có

 \(BC^2=AB^2+AC^2\)\(\Rightarrow BC^2=8^2+15^2\)\(\Rightarrow BC^2=64+225=289\)\(\Rightarrow BC=\sqrt[2]{289}\left(cm\right)\)

9 tháng 3 2019

a, xét tam giác abc vuông tại h

theo đlí Pitago co

\(bc=\sqrt{ab^2+ac^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)

vậy bc=10cm

b,xét tam giác abcvà tam giác hab có

góc bac= góc bha= 90 độ(gt)

góc b chung

=>tam giác abc đồng dạng vs tam giác hba(gg)

c,từ cmb có tam giác abc đồng dạng vs tam giác hba

=>\(\frac{ab}{bh}=\frac{bc}{ab}\Rightarrow ab.ab=bh.bc\Rightarrow ab^2=bh.bc\)

21 tháng 4 2020

a) Dựa vào định lý Pytago , ta tính được BC = 10 cm

b)  tam giác  HBA đồng dạng với tam giác ABC theo trường hợp g.g

c) từ hai tam giác đồng dạng nêu trên

=>\(\frac{BH}{AB}=\frac{AB}{BC}\)

=>\(AB^2=BH.BC\left(đpcm\right)\)

 ta tính được BH= 3.6 cm

28 tháng 3 2021

e) \(AH\perp BC\)(giả thiết).

\(\Rightarrow\Delta HAB\)vuông tại H.

\(\Rightarrow S_{HAB}=\frac{AH.BH}{2}=4,8.\frac{30}{14}=\frac{144}{14}=\frac{72}{7}\left(cm^2\right)\)

Xét \(\Delta ABC\)có phân giác BD (giả thiết).

\(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\)(tính chất).

\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{BC+AB}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+AB}\)

\(\Rightarrow\frac{AD}{8}=\frac{6}{10+6}=\frac{6}{16}=\frac{3}{8}\)(thay số).

\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)

Vì \(\Delta ABC\)vuông tại A (giả thiết).

\(\Rightarrow\widehat{CAB}=90^0\Rightarrow\widehat{DAB}=90^0\)

\(\Rightarrow\Delta ADB\)vuông tại A.

\(\Rightarrow S_{ADB}=\frac{AD.AB}{2}=\frac{3.6}{2}=9\left(cm^2\right)\)

Ta có: \(S_{ABC}=\frac{AB.AC}{2}\)(theo câu a))

\(\Rightarrow S_{ABC}=\frac{6.8}{2}=\frac{48}{2}=24\left(cm^2\right)\)

Lại có: \(S_{ABD}+S_{BCD}=S_{ABC}\)

\(\Rightarrow9+S_{BCD}=24\)(thay số).

\(\Rightarrow S_{BCD}=24-9=15\left(cm^2\right)\)

Vậy \(S_{HAB}=\frac{72}{7}cm^2;S_{BCD}=15cm^2\)

28 tháng 3 2021

A B C H E D I

29 tháng 6 2016

a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ

\(BC^2=AB^2+AC^2\)

\(BC^2=6^2+8^2=100\)

\(BC=10\)

b, Xét tam giác ABC và tam giác AHB có

góc BAC=góc  BHA=90độ

b góc chung

=> tam giác ABC đồng dạng với tam giác HBA ( gg)

c => \(\frac{AB}{HB}=\)\(\frac{BC}{BA}\) => \(AB^2=HB.BC\)

29 tháng 6 2016

ths bạn, nhưng k có câu D à bạn a,b,c mình cx làm đc r =((

6 tháng 5 2018

a)  Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

                \(AB^2+AC^2=BC^2\)

        \(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

        \(\Leftrightarrow\)   \(BC=\sqrt{100}=10\)

b)  Xét  \(\Delta HAB\)và   \(\Delta HCA\)có:

      \(\widehat{AHB}=\widehat{CHA}=90^0\)

     \(\widehat{HAB}=\widehat{HCA}\)  (cùng phụ với góc HAC)

suy ra:   \(\Delta HAB~\Delta HCA\)(g.g)

c)  Xét \(\Delta ABH\)và  \(\Delta CBA\)có:

       \(\widehat{AHB}=\widehat{CAB}=90^0\)

      \(\widehat{B}\) CHUNG

suy ra:   \(\Delta ABH~\Delta CBA\)  (g.g)

\(\Rightarrow\)\(\frac{BH}{AB}=\frac{AB}{BC}\) 

\(\Rightarrow\)\(BH.BC=AB^2\)  (1)

\(BE=BC-CE=10-4=6\)  \(\Rightarrow\)\(BE=AB\) \(\Rightarrow\)\(BE^2=AB^2\)  (2) 

Từ (1) và (2) suy ra:   \(BE^2=BH.BC\)

d)    \(S_{ABC}=\frac{AB.AC}{2}=24\)

\(\Delta ABC\)   có   \(BD\)là phân giác \(\widehat{ABC}\)

\(\Rightarrow\)\(\frac{S_{BAD}}{S_{BDC}}=\frac{AB}{BC}=\frac{3}{5}\)  

\(\Rightarrow\)\(\frac{S_{BAD}}{3}=\frac{S_{BDC}}{5}=\frac{S_{BAD}+S_{BDC}}{3+5}=\frac{S_{ABC}}{8}=3\)

\(\Rightarrow\)\(S_{BAD}=9\)

Xét  \(\Delta ABD\)và   \(\Delta EBD\) có:

    \(AB=EB\) (câu c)

   \(\widehat{ABD}=\widehat{EBD}\) (gt)

   \(BD:\)chung

suy ra:  \(\Delta ABD=\Delta EBD\) (c.g.c)

\(\Rightarrow\)\(S_{ABD}=S_{EBD}=9\)

\(\Rightarrow\)\(S_{CED}=S_{ABC}-S_{ABD}-S_{EBD}=6\)

p/s: tính diện tích CED còn cách khác, bn dễ dàng c/m tgiac CED ~ tgiac CAB, đến đây thì lm típ nha, 

13 tháng 4 2021

đc

4 tháng 5 2021

cau co cau tlra loi ko

11 tháng 3 2022

BẠN CÓ THỂ TRA THAY VÌ HỎI ĐC KO

 

11 tháng 3 2022

nhưng mà web này để hỏi mè =)))