Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
a)
Xét tam giác ABC ta có
\(AB^2+AC^2=BC^2\)(định lý py ta go)
144 + 256 = BC2
400 = BC2
BC = 20 ( cm )
Xét tam giác ABC có
BD là đường phân giác của tam giác
nên AD/DC = AB/BC = 16/20 = 4/5
có AD + DC = AC = 16
dễ tìm ra AD = 64/9 (cm)
DC = 80/9 (cm)
b) xét 2 tam giác HBA và ABC
có góc ABC chung
2 góc AHB và CAB bằng nhau cùng bằng 90 độ
nên 2 tam giác HAB và ABC đồng dạng với nhau
c)
có 2 tam giác HAB và ABC đồng dạng với nhau
nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)
d)
có E là hình chiếu của của C trên BD
nên \(CE\perp BD\)
suy ra \(\widehat{BEC}=90^0\)
xét 2 tam giác BHK và BEC
có \(\widehat{BHK}=\widehat{BEC}=90^0\)
\(\widehat{CEB}\)chung
nên 2 tam giác BHK và BEC đồng dạng với nhau
suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)
có 2 tam giác HAB và ABC đồng dạng với nhau
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)
từ (1) và (2) suy ra
\(AB^2=BK\cdot BE\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20cm
c: AD là phân giác
=>BD/CD=AB/AC=3/4
=>S ABD/S ACD=3/4
d: BD/CD=3/4
=>BD/3=CD/4
mà BD+CD=10
nên BD/3=CD/4=10/7
=>BD=30/7cm; CD=40/7cm
1, a, Áp dụng định lý Pi-ta-go vào ΔΔ vuông ABCABC có:
AB2+AC2=BC2⇔BC=20AB2+AC2=BC2⇔BC=20 (cm)
Do AD là phần giác ˆAA^ theo tính chất đường phân giác ta có:
BDCD=ABAC=1216=34BDCD=ABAC=12/16=3/4
⇒BD/BD+CD=3/3+4⇒BD/BC=3/7⇒BD/BD+CD=3/3+4⇒BD/BC=3/7
⇒BD=3/7BC=60/7⇒BD=3/7BC=6/07
⇒DC=BC−BD=807⇒DC=BC−BD=807
b, AH là đường cao ΔΔ vuông ABC nên:
SΔABC=AH.BC/2=AB.AC2SΔABC=AH.BC2=AB.AC/2
⇒AH=AB.C/BC=48/5⇒AH=AB.C/BC=48/5 (cm)
Ta có:
BH2=AB2−AH2⇒BH=365BH2=AB2−AH2⇒BH=365 (cm)
⇒DH=BD=BH=4835⇒DH=BD=BH=4835 (cm)
AD2=DH2+AH2⇒AD=48√2/7AD2=DH2+AH2⇒AD=4827 (cm)
Bài 2, a,
Xét hai ΔABMΔABM và ΔACNΔACN có:
ˆAA^ chung
AB=ACAB=AC
ˆABM=ˆACNABM^=ACN^ (=12ˆB=12ˆC)(=12B^=12C^)
⇒ΔABM=ΔACN⇒ΔABM=ΔACN (g.c.g)
⇒AM=AN⇒AM=AN (hai cạnh tương ứng)
Ta có: AM=AN và AB=AC ⇒ANAB=AMAC⇒MN//BC⇒ANAB=AMAC⇒MN//BC (Ta-lét đảo)
b, Do BM là phân giác ˆBB^ theo tính chất đường phân giác ta có:
AM/MC=AB/BC=5/6AM/MC=AB/BC=5/6
⇒AM/AM+MC=5/5+6⇒AM/AC=5/11⇒AM/AM+MC=55+6⇒AM/AC=511
⇒AM=5/11AC=25/11⇒AM=5/11AC=25/11 (cm)
⇒MC=AC−AM=30/11⇒MC=AC−AM=30/11 (cm)
MN//BC⇒MN/BC=AM/AC=5/11MN//BC⇒MNBC=AMAC=5/11
⇒MN=5/11BC=3011⇒MN=51/1BC=30/11 (cm).
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA đồng dạng với ΔABC
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=12^2+16^2=400\)
=>\(BC=\sqrt{400}=20\left(cm\right)\)
c: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\)
=>\(S_{ABD}=\dfrac{3}{4}\cdot S_{ACD}\)
d: Ta có: \(\dfrac{BD}{CD}=\dfrac{3}{4}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
=>\(BD=\dfrac{20}{7}\cdot3=\dfrac{60}{7}\left(cm\right);CD=\dfrac{20}{7}\cdot4=\dfrac{80}{7}\left(cm\right)\)
e: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot20=12\cdot16=192\)
=>AH=192/20=9,6(cm)
Xét hai tam giác ABC và tam giác HBA có
A = H = 90
B là góc chung
=> tam guacs ABC đồng dạng với tam giác HBA (g _ g) (1)
Xét hai tam giác ABC và tam giác HCA có
A= H = 90
C là góc chung
=> tam giác ABC ~ tam giác HAC ( g_ g) (2)
(1) =>\(\frac{AB}{BC}=\frac{BH}{BA}\)=> AB.AB = BH.BC => \(AB^2\)\(=BH.BC\)
(2) => \(\frac{AC}{BC}=\frac{CH}{AC}=AC.AC=BC.CH=AC^2=BC.CH\)
b ) Áp dụng định lý Py - ta - go vào tam giác ABC
\(BC^2=AC^2+AB^2\)= \(16^2+12^2\)= 400
=> BC = \(\sqrt{400}=20\)
từ tam giác ABC ~ HBA =>\(\frac{AB}{BH}=\frac{BC}{BA}< =>\frac{12}{BH}=\frac{20}{12}=>BH=\frac{12.12}{20}=7,2\)
từ tam giác ABC ~ HAC => \(\frac{AB}{HA}=\frac{BC}{AC}< =>\frac{12}{HC}=\frac{20}{16}=>HC=\frac{12.16}{20}=9,6\)
Áp dụng định lý Py - ta - go vào tam giác HBA
\(AH^2=AB^2-HB^2=12^2-7,2^2=9,6\)