Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BMN va BAC ta có:
\(\frac{BM}{BA}=\frac{BN}{BC}=\frac{1}{2}\)(vì M là trung điểm của AB, N là trung điểm của BC)
góc B chung
=> tam giác BMN đồng dạng với tam giác BAC ( c-g-c)
=> góc M=góc A = 90 độ
Vậy MN vuông góc với AB
b)
\(MN=\sqrt{BN^2-BM^2}\)
\(\Rightarrow MN=\sqrt{\frac{13}{2}^2-6^2}\)
\(\Rightarrow MN=\frac{5}{2}\)
a) Xét tam giác ABC có:
M là trung điểm AB(gt)
N là trung điểm BC(gt)
=> MN là đường trung bình của tam giác ABC
=> MN//AC
Mà AB⊥AC
=> MN⊥AB
b) Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=5\left(cm\right)\)
Xét tam giác ABC có
MN là đường trung bình
=> \(MN=\dfrac{1}{2}AC=\dfrac{1}{2}.5=\dfrac{5}{2}\left(cm\right)\)
A B C M P
a) Diện tích của tam giác ABC là:
\(S_{\Delta ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.8.6=24\) (cm2)
b) Ta có: N là trung điểm của AB
M là trung điểm của BC
=> MN là đường trung bình của tam giác ABC
\(\Rightarrow MN//AC\)
Mà \(AB\perp AC\) (vì tam giác ABC vuông tại A)
Suy ra: \(MN\perp AB\)
c) Trong tứ giác AMBP:
Hai đường chéo PM và AB cắt nhau tại trung điểm mỗi đường (NP = NM ; NB = NA)
=> Tứ giác AMBP là hình bình hành
Mà \(MN\perp AB\) (cmt) cũng đồng nghĩa với \(MN\perp PM\) (vì P là điểm đối xứng với M qua AB)
=> AMBP là hình thoi (vì hình bình hành có hai đường chéo vuông góc là hình thoi)
theo giả thiết ta có:BM=MA;BN=NC\(\Rightarrow\) MN là dg trung bình của tam giác ABC
\(\rightarrow\) MN song song vs BC\(\rightarrow\) góc BMN=BAC(đồng vị)
b/vì BM=MA ;BN=NC SUY RA:BM=MA=12:2=6 cm và BN=NC=BC:2=13:2=6.5 cm
áp dụng định lý pi-ta-go cho tam giác BNM vuông tại m:MN2=BN2+BM2
thay số:MN2=62+6.52
MN2=78.25 cm\(\Rightarrow\)MN=\(\sqrt{78.25}\)
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai
a) Ta có: M là trung điểm AB
N là trung điểm BC
=> MN là đường trung bình của \(\Delta ABC\)
=> MN \\ AC .Nên MN\(\perp AB\) (đpcm)
b) Áp dụng định lý Pytago ,ta có :
AB2 + AC2 = BC2
AC2 = 132 - 122
=> AC = 5 cm
Lại có: MN =\(\frac{1}{2}AC\)(T/c đtb)
=> MN = \(\frac{1}{2}5\)= 2.5 cm