Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C A K B E D
Cm: a) Xét t/giác ACE và t/giác AKE
có: \(\widehat{ACE}=\widehat{AKE}=90^0\) (gt)
AE : chung
\(\widehat{CAE}=\widehat{KAE}\) (gt)
=> t/giác ACE = t/giác AKE (ch - gn)
=> AC = AK ; EC = EK (các cặp cạnh t/ứng)
Ta có: +) AC = AK (cmt) => A thuộc đường trung trực của CK
+) EC = EK (cmt) => E thuộc đường trung trực của CK
Mà A \(\ne\)E => AE là đường trung trực của CK
=> AE \(\perp\)CK
b) Xét t/giác ABC có góc C = 900
=> \(\widehat{A}+\widehat{ABC}=90^0\)
=> \(\widehat{ABC}=90^0-\widehat{A}=90^0-60^0=30^0\)
Ta có: \(\widehat{CAE}=\widehat{EAB}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)
=> \(\widehat{EAB}=\widehat{ABE}=30^0\) => t/giác ABE cân tại E
=> AE = EB
=> AK = KB (quan hệ giữa đường xiên và hình chiếu)
(có thể xét qua 2 t/giác AEK và t/giác BEK)
c) Xét t/giác EKB có góc EKB = 90 độ
=> EB > KB (ch > cgv)
Mà KB = AK (Cmt); AK = AC (vì t/giác ACE = t/giác AKE)
=> EB > AC
d) Ta có: AC \(\perp\)BC \(\equiv\)C
KE\(\perp\)AB \(\equiv\)K
BD \(\perp\)AD \(\equiv\)D
=> AC, BD. KE đi qua 1 điểm (t/c 3 đường cao)
A B C E K D 1 2 1
a) Ta có : \(\widehat{BAC}=60^0\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{B_1}=30^0.\)
\(\Delta ACE=\Delta AKE\left(CH-GN\right)\Rightarrow AC=AK\)=> \(\Delta ACK\)cân tại A => AE vừa là phân giác, vừa là trung tuyến => \(AE\perp CK\).
b) Từ câu a) => \(\Delta AEB\)cân tại E => AE = EB ; EK vừa là đường cao, vừa là trung tuyến => KA = KB.
c) Ta có AK \(\perp\)EK, theo quan hệ giũa đường vuông góc và đường xiên, ta có : AE > AK <=> AE > AC (vì AK = AC) <=> EB > AC (vì EB = AE).
d) Xét \(\Delta AEB\)có : \(BD\perp AE,AC\perp BE,EK\perp AB\)=> BD, AC, EK là ba đường cao của tam giác AEB => chúng đồng quy (theo tính chất ba đường cao trong tam giác).
Tam giác ABC vuông tại A có:
ABC + ACB = 900
ABC + 400 = 900
ABC = 900 - 400
ABC = 500
Xét tam giác ABD và tam giác EBD có:
AB = EB (gt)
ABD = EBD (BD là tia phân giác của ABE)
BD chung
=> Tam giác ABD = Tam giác EBD (c.g.c)
Xét tam giác AKB và tam giác BDA có:
KAB = DBA (2 góc so le trong, AK // BD)
AB chung
ABK = BAD (= 900)
=> Tam giác AKB = Tam giác BDA (g.c.g)
=> AK = BD (2 cạnh tương ứng)
BAD = BED (Tam giác ABD = Tam giác EBD)
mà BAD = 900 (tam giác ABC vuông tại A)
=> BED = 900
=> DE _I_ BC
Tam giác FBC có: CA là đường cao (CA _I_ BF)
BH là đường cao (BH _I_ FC)
mà CA cắt BH tại D
=> D là trực tâm của tam giác FBC
=> FD là đường cao của tam giác FBC
=> FD _I_ BC
mà ED _I_ BC (chứng minh trên)
=> \(FD\equiv ED\)
=> E, D, F thẳng hàng
Cho tam giác ABC vuông ở C có góc A bằng 60 độ. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc với AB ( K thuộc AB ). Kẻ BD vuông góc với tia AE ( D thuộc AE). Chứng minh :
- AC=AK và AE vuoogn góc với CK
- KA=KB
- EB>AC
- Ba đường thẳng AC,BD,KE cùng đi qua 1 điểm
M.n giúp mình nha :))) Cảm ơn nhiều ^^
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Nguyễn Thị Hương Giang - Toán lớp 7 - Học toán với OnlineMath
a) xét tam giác EKB vuông tại K (EK\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)\(\perp\)\(\perp\perp\) vuông góc với AB) có
EK là cạnh góc vuông
EB là cạnh huyền
Vì trong \(\Delta\)tam giác vuông, cạnh huyền là cạnh lớn nhất.
suy ra: DC > DE
mà EK = CE (tam giác ACE = tam giác AKE)
suy ra: CE < EB