Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo câu a, b, c tại đây nhé.
Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath
d) Ta thấy EB = AE
Mà theo quan hệ giữa đường vuông góc với đường xiên thì AC < AE
Vậy nên AC < EB.
A B C D E K H
a) gọi giao điểm của AE và CK là H
xét 2 tam giác vuông AKE và ACE có:
AE(chung)
KAE=CAE(gt)
=> ΔAKE=ΔACE(CH-GN)
=> AC=AK
b)xét ΔAKH và ΔACH có:
AC=AK(theo câu a)
AH(chung)
KAH=CAH(gt)
=> ΔAKH=ΔACH(c.g.c)
=>\(\begin{cases}HK=HC\\AHK=AHC\end{cases}\)
mà AHK+AHC=\(180^o\)
=> AHK=AHC=\(180^o:2=90^o\)
ta có: AE_|_CK và HK=HC
=> AE là đường trung trực của CK
c)
ΔABC vuông tại C có góc A=\(60^o\) => góc B=\(30^o\)
=>AC=1/2 AB
=>AK=1/2AB
ta có: BK=AB-AK=AB-1/2AB=1/2AB
=> AK=BK
d)ΔABC vuông tại C có A=\(60^o\)
=> AC=AK=BK=1/2AB(theo câu c)
ta có Δ AKE vuông tại K=> BK<BE
=> AC<BE(đfcm)
Cho tam giác ABC vuông tại C có góc A = 60 độ và đường phân giác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K ( K thuộc AB) . Kẻ BD vuông góc với AE tại D ( D thuộc AE ) . chứng minh
a) tam giác ACE bằng tam giác AKE
b) AE là đường trung trực của đoạn CK
c) KA=KB
d) EB > EC
giống không ạ ?
C A K B E D
Cm: a) Xét t/giác ACE và t/giác AKE
có: \(\widehat{ACE}=\widehat{AKE}=90^0\) (gt)
AE : chung
\(\widehat{CAE}=\widehat{KAE}\) (gt)
=> t/giác ACE = t/giác AKE (ch - gn)
=> AC = AK ; EC = EK (các cặp cạnh t/ứng)
Ta có: +) AC = AK (cmt) => A thuộc đường trung trực của CK
+) EC = EK (cmt) => E thuộc đường trung trực của CK
Mà A \(\ne\)E => AE là đường trung trực của CK
=> AE \(\perp\)CK
b) Xét t/giác ABC có góc C = 900
=> \(\widehat{A}+\widehat{ABC}=90^0\)
=> \(\widehat{ABC}=90^0-\widehat{A}=90^0-60^0=30^0\)
Ta có: \(\widehat{CAE}=\widehat{EAB}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)
=> \(\widehat{EAB}=\widehat{ABE}=30^0\) => t/giác ABE cân tại E
=> AE = EB
=> AK = KB (quan hệ giữa đường xiên và hình chiếu)
(có thể xét qua 2 t/giác AEK và t/giác BEK)
c) Xét t/giác EKB có góc EKB = 90 độ
=> EB > KB (ch > cgv)
Mà KB = AK (Cmt); AK = AC (vì t/giác ACE = t/giác AKE)
=> EB > AC
d) Ta có: AC \(\perp\)BC \(\equiv\)C
KE\(\perp\)AB \(\equiv\)K
BD \(\perp\)AD \(\equiv\)D
=> AC, BD. KE đi qua 1 điểm (t/c 3 đường cao)
A B C E K D 1 2 1
a) Ta có : \(\widehat{BAC}=60^0\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{B_1}=30^0.\)
\(\Delta ACE=\Delta AKE\left(CH-GN\right)\Rightarrow AC=AK\)=> \(\Delta ACK\)cân tại A => AE vừa là phân giác, vừa là trung tuyến => \(AE\perp CK\).
b) Từ câu a) => \(\Delta AEB\)cân tại E => AE = EB ; EK vừa là đường cao, vừa là trung tuyến => KA = KB.
c) Ta có AK \(\perp\)EK, theo quan hệ giũa đường vuông góc và đường xiên, ta có : AE > AK <=> AE > AC (vì AK = AC) <=> EB > AC (vì EB = AE).
d) Xét \(\Delta AEB\)có : \(BD\perp AE,AC\perp BE,EK\perp AB\)=> BD, AC, EK là ba đường cao của tam giác AEB => chúng đồng quy (theo tính chất ba đường cao trong tam giác).
bạn tự vẽ hình nha
Xét tg AEC và tg AEK có:
góc ACE= góc AEK ( = 90 độ )
AE : cạnh chung
góc A1 = góc A2 ( AE là phân giác )
=> tg AEC= tg AEK ( cạnh huyền - góc nhọn )
=> AC= AK ( 2 cạnh tương ứng )
b) Vì AC= AK ( theo a)
=> tg ACK cân tại A
Vì trong 1 tg cân đường phân giác đồng thời là đường trung tuyến nên Ả là đường trung trực của CK
c) Xét tg AEK và tg BEK có:
góc AKE= góc BKE ( = 90 độ )
KE : cạnh chung
góc KAE = góc KBE ( đồng vị )
=> tg AEK= tg BEK ( c-g-c)
=> KA= KB
a/ Tam giác ABE vuông tại A và tam giác BKE vuông tại K có
ABE=KBE(BE là p/g ABK)
BE là cạnh chung
Tam giác ABE=Tam giác BKE (ch-gn)
=>BA=BK hay tam giác ABK cân tại B nên đường phân giác BE đồng thòi là đường cao. Vậy BE vuông góc với AK.
b/Tam giác ABK cân tại B có B=60 độ nên là tam giác đều =>KB=KA=AB. Tương tụ ta có tam giác KBC cân tại K => KC=KA
Vậy KB=KC
c/EC>AB
Ta có EK là trung trực BC nên EB=EC, mà EB>AB do tam giác ABE vuông tại A nên EC>AB
d/ Gọi giao điểm AB và CD là N. Ta cần chứng minh N,E,K thẳng hàng để 3 đường thắng AB,EK,CD đi qua 1 điểm.
Thật vậy, tam giác AEN và tam giác KEC có
NAE=EKC (=90 độ)
EA=EK (c/mt)
EN=EC(tam giác BNC có phân giác BD đồng thời là đường cao nên đồng thời là trung trức CN)
Vậy tam giác AEN=tam giác KEC (ch-gn)
=> AEN=KEC
2 góc này ở vị trí đối đỉnh nên N,E,K thắng hàng. Vậy N,E,K thẳng hàng =>AB,EK,DC cùng đi qua 1 điểm
Cho tam giác ABC vuông ở C có góc A bằng 60 độ. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc với AB ( K thuộc AB ). Kẻ BD vuông góc với tia AE ( D thuộc AE). Chứng minh :
- AC=AK và AE vuoogn góc với CK
- KA=KB
- EB>AC
- Ba đường thẳng AC,BD,KE cùng đi qua 1 điểm
M.n giúp mình nha :))) Cảm ơn nhiều ^^
a, AC = AK. AE ⊥ CK.
Xét hai tam giác vuông ACE và AKE có:
AE : chung
^CAE = ^KAE (AE là phân giác)
Do đó: ΔACE = ΔAKE (cạnh huyền - góc nhọn)
=> AC = AK (hai cạnh tương ứng)
=> ΔACK cân tại A
=> ^ACK = ^AKC (hai góc ở đáy)
Gọi giao của AE và CK là I
Xét ΔCAI và ΔKAI có: ^CAI + ^AIC + ^ACI = ^KAI + ^KIA + ^AKI (= 180o)
Mà : ^CAI = ^KAI (AE là phân giác) , ^ACK = ^AKC (cmt)
=> ^AIC = ^AIK Mà ^AIC + ^AIK = 180o (kề bù)
=> ^AIC = ^AIK = 180o : 2 = 90
Hay AE ⊥ CK
b, KA = KB
Ta có: ^CAI = ^KAI = ^CAB/2 = 60o/2 = 30o (AE là phân giác)
Xét ΔABC vuông tại C có: ^BAC + ^ABC = 90o (phụ nhau) => ^ABC = 90o - ^BAC = 90o - 60o = 30o.
Xét ΔAKE vuông tại K có: ^EAK + ^AEK = 90o (phụ nhau)=> ^AEK = 90o - ^EAK = 90o - 30o = 60o.
Xét ΔKEB vuông tại K có: ^KEB + ^ABC = 90o (phụ nhau) => ^KEB = 90o - ^ABC = 90o - 30o = 60o.
Xét hai tam giác vuông KEA và KEB có:
KE : chung
^KEA = ^KEB (=60o)
Do đó: ΔKEA = ΔKEB (cgv-gnk)
=> KA = KB (hai cạnh tương ứng)
c) EB > AC
Vì ΔKEA = ΔKEB (câu b)
=> AE = EB (hai cạnh tương ứng) (1)
Xét ΔAEC vuông tại C có: AE > AC (định lí) (2)
Từ (1) và (2) suy ra: EB > AC
d) AC, BD, KE đồng quy.
Gọi giao điểm của AC và BD là G.
Xét ΔABG có: AD ⊥ BG và BC ⊥ AG
Mà chúng cắt nhau tại E => E là trực tâm
Nên G, E, K thẳng hàng
Vậy AC, BD, KE cùng đi qua một điểm (đồng quy)
P/s: tự vẽ hình, không hiểu chỗ nào = inbox hỏi.
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Hằng Dương Thị - Toán lớp 7 - Học toán với OnlineMath