Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó; ΔACE=ΔAKE
Suy ra: AC=AK
b: Ta có: ΔACE=ΔAKE
nên EC=EK
mà AC=AK
nên AE là đường trung trực của CK
a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30o
⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥K và có ˆEAK=30o)
Tương tự, có ˆEBK=30o (vì ΔABC⊥C và có ˆA=60)
ˆKEB=60o
Xét hai tam giác vuông ΔAEK và ΔKEB có:
ˆAEK=ˆKEB=60o (cmt)
EKEK chung
ˆEKB=ˆEKA=90o
⇒ΔAEK=ΔBEK (g.c.g)
⇒AK=KB (hai cạnh tương ứng)
b) Có ˆDAB=30o (cmt) ⇒ˆABD=60o (ΔADB⊥D)
Xét hai tam giác vuông ΔABC và ΔABD có:
ABAB chung
ˆBAC=ˆABD=60o ( gt + cmt)
ˆDAB=ˆABC=30o (g.c.g)
⇒ΔABC=ΔABD
⇒AD=BC (hai cạnh tương ứng)
a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30oBAC^⇒EAK^=30o
⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥KΔAEK⊥K và có ˆEAK=30oEAK^=30o)
Tương tự, có ˆEBK=30oEBK^=30o (vì ΔABC⊥CΔABC⊥C và có ˆA=60oA^=60o)
ˆKEB=60oKEB^=60o
Xét hai tam giác vuông ΔAEKΔAEK và ΔKEBΔKEB có:
ˆAEK=ˆKEB=60oAEK^=KEB^=60o (cmt)
EKEK chung
ˆEKB=ˆEKA=90oEKB^=EKA^=90o
⇒ΔAEK=ΔBEK⇒ΔAEK=ΔBEK (g.c.g)
⇒AK=KB⇒AK=KB (hai cạnh tương ứng)
b) Có ˆDAB=30oDAB^=30o (cmt) ⇒ˆABD=60o⇒ABD^=60o (ΔADB⊥DΔADB⊥D)
Xét hai tam giác vuông ΔABCΔABC và ΔABDΔABD có:
ABAB chung
ˆBAC=ˆABD=60oBAC^=ABD^=60o ( gt + cmt)
ˆDAB=ˆABC=30oDAB^=ABC^=30o (g.c.g)
⇒ΔABC=ΔABD⇒ΔABC=ΔABD
⇒AD=BC⇒AD=BC (hai cạnh tương ứng)
a)Vì AE là phân giác của góc BAC nên góc EAB=góc EBA
=> tg EAB cân tại E mà có EK là đg cao nên EK đồng thời là trung tuyên nên AK=BK
b)Xét tg ABC vuông tại C và tg BAD vuông tại D có
AB chung
ABC=BAD=30 độ
=> tg BAD=tg ABC(ch-gn)
=>AD=BC
Mình ngại vẽ hình qá : )
a) Xét tam giác vuông ABC ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow60^o+\widehat{B}+90^o\Rightarrow\widehat{B}=90^o-60^o=30^o\)
Vì AD là tia phân giác
\(\Rightarrow\widehat{CAE}=\widehat{KAE}=30^o\)
Xét hai tam giác vuông AEK và BEK có:
EK là cạnh chung
\(\widehat{EAK}=\widehat{EBK}\left(cmt\right)\)
\(\Rightarrow\Delta AEK=\Delta BEK\)( cạnh góc vuông góc nhọn kề )
\(\Rightarrow AK=KB\)( cặp cạnh tương ứng bằng nhau )
b) Vì tam giác AEK = tam giác BEK ( cmt )
Suy ra AE = BE ( cặp cạnh tương ứng bằng nhau )
Xét hai tam giác vuông ACE và BDE có:
AE = BE ( cmt )
\(\widehat{AEC}=\widehat{BED}\)( đối đỉnh )
\(\Rightarrow\Delta ACE=\Delta BDE\)( cạnh huyền góc nhọn )
\(\Rightarrow CE=ED\)( cặp cạnh tương ứng )
Mà AE = BE ( cmt )
\(\Rightarrow CE+BE=ED+AE\)
\(\Rightarrow AD=BC\)
B) Ta có : góc CBA + góc BAC = 90 độ [ tam giác ABC vuông tại C ]
\Rightarrow góc CBA + 60 độ = 90 độ - 30 độ = 30 độ
mà góc KAE = 30 độ
Vậy góc CBA = góc KAE = 90 độ
a ) xét tam giác ABC vuông tại C có góc A = 60 => góc B = 30 ( gt )
Mà EA là p/g góc BAC => góc BAE = 30
Nên => tam giác AEB cân tại E .
mà EK vuông AB => EK là đường cao tam giác cân AEB => EK là đường trung tuyến => K là trung điểm AB => AK = BK
b) xét tam giác BDA vuông tại D và tam giác ACB vuông tại C
Ta có : cạnh huyền AB chung
góc BAD = góc BCA ( cùng = 30 độ )
Nên tam giác BDA = tam giác ACB ( cạnh huyền-góc nhọn )
=> AD = BC ( hai cạnh tương ứng )
a) Xét tam giác AEK và tam giác AEC, có:
AE chung
Kˆ=Cˆ=900K^=C^=900
KAEˆ=CAEˆKAE^=CAE^ (AE là phân giác góc A)
⇒ΔAEK=ΔAEC(ch−gn)⇒ΔAEK=ΔAEC(ch−gn)
⇒AK=AC⇒AK=AC (Hai cạnh tương ứng)
Mà tam giác vuông ABC có: Aˆ=600A^=600
⇔AC=12BC⇔AC=12BC
⇔AK=12BC⇔AK=12BC
⇔AK=BK⇔AK=BK
b) Xét tam giác ABC và tam giác BAD, có:
BCAˆ=ABDˆ=900BCA^=ABD^=900
AB chung
CBAˆ=DABˆ=300CBA^=DAB^=300
⇔ΔABC=ΔBAD(ch−gn)⇔ΔABC=ΔBAD(ch−gn)
⇒AD=BC⇒AD=BC (Hai cạnh tương ứng)
Vậy ...
a: Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB can tại E
mà EK là đường cao
nên K là trung điểm của AB
=>KA=KB
b: Xét ΔAEC vuông tại C và ΔBED vuông tại D có
EA=EB
góc AEC=góc BED
=>ΔAEC=ΔBED
=>EC=ED
=>AD=BC
vẽ hình ik bạn
B D K E A C