Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn xem câu hỏi tương tự của bạn trương kim chi đi, có bài này mà
mk định vẽ hình cho bạn nhưng mk ko hay lên online maths nên ko bt
a) Diện tích tam giác \(ABC\)là:
\(4\times6\div2=12\left(cm^2\right)\)
b) \(NM\)song song với \(AC\)nên \(S_{ANC}=S_{AMC}\)(có chung đáy \(AC\), khoảng cách từ \(N,M\)đến \(AC\)bằng nhau).
\(N\)là trung điểm \(BC\)nên \(S_{ANC}=\frac{1}{2}\times S_{ABC}\)(chung đường cao hạ từ \(A\), \(CN=\frac{1}{2}\times CB\)).
Suy ra \(S_{AMC}=\frac{1}{2}\times S_{ABC}\)suy ra \(MA=\frac{1}{2}\times AB\)(chung đường cao hạ từ \(C\)).
\(S_{ANB}=S_{ABC}-S_{ANC}=S_{ABC}-\frac{1}{2}\times S_{ABC}=\frac{1}{2}\times S_{ABC}\)
\(S_{BNM}=\frac{1}{2}\times S_{ANB}\)(chung đường cao hạ từ \(N\), \(MB=\frac{1}{2}\times AB\))
Suy ra \(S_{BNM}=\frac{1}{2}\times S_{ANB}=\frac{1}{2}\times\frac{1}{2}\times S_{ABC}=\frac{1}{4}\times S_{ABC}\).
a/
Xét tam giác AOM và tam giác AOC có chung đường cao hạ từ O xuống AC
\(\frac{S_{AOM}}{S_{AOC}}=\frac{AM}{AC}=\frac{1}{2}\Rightarrow S_{AOC}=2xS_{AOM}=2x4=8cm^2\)
b/
Xét tam giác AIC và tam giác BIC có chung đường cao hạ từ C xuống AB
\(\frac{S_{AIC}}{S_{BIC}}=\frac{AI}{BI}=\frac{1}{2}\)
Hai tam giác trên lại chung cạnh đáy IC nên
S(AIC) / S(BIC) = đường cao hạ từ A xuống IC / đường cao hạ từ B xuống IC = 1/2
Xét tam giác AOC và tam giác BOC có chung cạnh đáy OC nên
S(AOC) / S(BOC) = đường cao hạ từ A xuống IC / đường cao hạ từ B xuống IC = 1/2
\(\Rightarrow S_{BOC}=2xS_{AOC}=2x8=16cm^2\)
Xét tam giác AOM và tam giác COM có chung đường cao hạ từ O xuống AC nên
\(\frac{S_{AOM}}{S_{COM}}=\frac{AM}{CM}=1\Rightarrow S_{AOM}=S_{COM}=4cm^2\)
\(\Rightarrow S_{BCM}=S_{BOC}+S_{COM}=16+4=20cm^2\)
Xét tam giác ABC và tam giác BCM có chung đường cao hạ từ B xuống AC nên
\(\frac{S_{BCM}}{S_{ABC}}=\frac{CM}{AC}=\frac{1}{2}\Rightarrow S_{ABC}=2xS_{BCM}=2x20=40cm^2\)
c/
Xét tam giác AIC và tam giác ABC có chung đường cao hạ từ C xuống AB nên
\(\frac{S_{AIC}}{S_{ABC}}=\frac{AI}{AB}=\frac{1}{3}\Rightarrow S_{AIC}=\frac{S_{ABC}}{3}=\frac{40}{3}cm^2\)
\(S_{AOI}=S_{AIC}-S_{AOC}=\frac{40}{3}-8=\frac{16}{3}cm^2\)