K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2020

a)

Vì tam giác ABC vuông tại A

=> AB<BC( Vì cạnh huyền lớn hơn cạnh góc vuông )

b) Kẻ DHBCDH⊥BC

Xét ΔABD,ΔHBDΔABD,ΔHBD có :

⎪ ⎪ ⎪⎪ ⎪ ⎪ˆBAD=ˆBHD(=90o)BD:chungˆABD=ˆHBD(BD là tia phân giác ca góc B){BAD^=BHD^(=90o)BD:chungABD^=HBD^(AD là tia phân giác của góc B)

ΔABD=ΔHBD(chgn)⇒ΔABD=ΔHBD(ch−gn)

AD=DH⇒AD=DH (2 cạnh tương ứng) (1)

Xét ΔDHCΔDHC có :

ˆH=90oDH<DCH^=90o⇒DH<DC ( cạnh góc vuông nhỏ hơn cạnh huyền) (2)

Từ (1) và (2) => DC>AD

3 tháng 2 2020

cảm ơn ban nhiều mk kết ban ko

3 tháng 2 2020

a, góc A + góc B = 120

góc A - góc B = 30 

=> góc A = (120 + 30) : 2 = 75

=> GÓC B = 75 - 30 = 45

tam giác ABC => góc A + góc B + góc C = 180

=> góc C = 180 - 120 = 60

=> BC > AB > AC (đl)

b, 

3 tháng 2 2020

cảm ơn ban nhiều ban giúp mk phần b) được ko

19 tháng 2 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Lời giải:

Trên cạnh AC lấy điểm E sao cho AE = AB.

Ta có: AB < AC nên AE < AC

Suy ra E nằm giữa A và C.

Xét ΔABD và ΔAED, ta có:

AB = AE (theo cách vẽ)

∠(BAD) = ∠(EAD) (gt)

AD cạnh chung

Suy ra: ΔABD = ΔAED (c.g.c)

Suy ra: BD = DE (2 cạnh tương ứng)

và ∠(ABD) = ∠(AED) (2 góc tương ứng)

Mà: ∠(ABD) + ∠B1= 180o (2 góc kề bù)

∠(AED) + ∠E1= 180o (2 góc kề bù)

Suy ra: ∠B1= ∠E1

Trong ΔABC ta có ∠B1là góc ngoài tại đỉnh B

Ta có: ∠B1 > ∠C (tính chất góc ngoài của tam giác)

Suy ra: ∠E1> ∠C

Suy ra: DC > DE (đối diện góc lớn hơn là cạnh lớn hơn)

Vậy BD < DC.

Trên cạnh AC lấy điểm E sao cho AE = AB

AB < AC nên AE < AC => E nằm giữa A và C

Xét ∆ABD và ∆AED:

 AB = AE (theo cách vẽ)      

\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)

AD cạnh chung

Do đó: ∆ABD = ∆AED (c.g.c)

=> BD = DE (2 cạnh tương ứng)

\(\Rightarrow\widehat{ABD}=\widehat{AED}\)(2 góc tương ứng)

\(\widehat{ABD}+\widehat{B_1}=180^0\)(2 góc kề bù)

\(\widehat{AED}+\widehat{E1}=180^0​\)(2 góc kề bù)

\(\Rightarrow\widehat{B_1}=\widehat{E_1}\)

Trong ∆ABC ta có\(\widehat{B_1}\)là góc ngoài tại đỉnh B.

\(\Rightarrow\widehat{B_1}>\widehat{C}\)(tính chất góc ngoài tam giác)

\(\Rightarrow\widehat{E_1}>\widehat{C}\)

Trong ∆DEC ta có:\(\widehat{E_1}>\widehat{C}\)

=>DC > DE  (đối diện góc lớn hơn là cạnh lớn hơn)

Suy ra: BD < DC

13 tháng 5 2018

a) Hai tam giác vuông \(ABD\)và \(HBD\)có:

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABC}\))

\(\Rightarrow\Delta ABD=\Delta HBD\)(cạnh huyền - góc nhọn)

\(\Rightarrow AD=DH\)(hai cạnh tương ứng)

b) \(AD=DH\)(câu a)     (1)

\(\Delta HDC\)vuông tại H

\(\Rightarrow DH< DC\)            (2)

Từ (1) và (2) suy ra: \(AD< DC\)

c) \(\Delta ADK\)\(\Delta HDC\)có:

\(\widehat{KAD}=\widehat{CHD}=90^0\)

\(AD=HD\left(\Delta ABD=\Delta HBD\right)\)

\(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\Delta ADK=\Delta HDC\left(g.c.g\right)\)

\(\Rightarrow AK=HC\)(hai cạnh tương ứng)

\(BK=AB+AK\)

\(BC=HB+HC\)

Mà \(AB=HB\)và \(AK=HC\)

Nên \(BK=BC\)

\(\Rightarrow\Delta KBC\)cân tại \(B\)

13 tháng 5 2018

A B C D H K 1 2 1 2

8 tháng 4 2017

A B C 6 10 D H K

a, Xét \(\Delta ABC\)VUÔNG tại A

Áp dụng định lý pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB^2=BC^2-AC^2\)

\(\Rightarrow AB^2=10^2-6^2\)

\(\Rightarrow AB^2=100-36\)

\(\Rightarrow AB^2=64\)

\(\Rightarrow AB=\sqrt{64}=8\)

VẬY AB=8 cm

b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90độ\)

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)

\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)

c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)

lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)

\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)

Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:

\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)

Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)

\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\Delta KBC\) cân tại B

8 tháng 4 2017

uhuhuhu sợ bài này lắm rồi !