Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\left(pytago\right)\)
Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{144}{20}=7,2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{256}{20}=12,8\left(cm\right)\end{matrix}\right.\)
Vì AD là phân giác nên \(\dfrac{AB}{AC}=\dfrac{BD}{DC}=\dfrac{12}{16}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}DC\)
Mà \(BD+DC=BC=20\Leftrightarrow\dfrac{7}{4}DC=20\Leftrightarrow DC=\dfrac{80}{7}\left(cm\right)\)
\(\Leftrightarrow HD=CH-CD=12.8-\dfrac{80}{7}=\dfrac{48}{35}\left(cm\right)\)
Ta có: BC2 = AB2 + AC2 \(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20cm\)
\(AB^2=HB.BC\Rightarrow HB=\frac{AB^2}{BC}=\frac{12^2}{20}=\frac{36}{5}=7,2cm\)
\(AC^2=HC.BC\Rightarrow HC=\frac{AC^2}{BC}=\frac{16^2}{20}=\frac{64}{5}=12,8cm\)
Vì AD là phân giác góc BAC nên ta có :
\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\Rightarrow DC=\frac{4}{7}BC=\frac{4}{7}.20=\frac{80}{7}cm\)
=> HD = BC - (HB + DC) \(=20-\left(7,2+\frac{80}{7}\right)=\frac{48}{35}cm\)
Vậy HB = 7,2cm ; HC = 12,8cm ; HD = 48/35cm
1)
a) Xét ΔABC có
\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:
\(AB\cdot AC=AH\cdot BC\)
\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)
Vậy: AH=3,6cm
b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)
hay CH=2,7(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BH=BC-CH=7,5-2,7=4,8(cm)
Vậy: BH=4,8cm; CH=2,7cm
1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go
=>\(\Delta ABC\) vuông tại A
Ta có: AB.AC=BC.AH
=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\) (cm)
tự vẽ hình..
\(BC=\sqrt{AC^2+AB^2}=\sqrt{12^2+16^2}=20cm\)( Định lý pitago cho tam giác vuông ABC)
\(\Rightarrow BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2cm\)( Áp dụng hệ thức lương cho tam giác vuông ABC)
\(HC=BC-HB=20-7,2=12,8cm\)
Ta có: BC^2 = AB^2 + AC^2
= 12^2 + 16^2 = 400
=> BC = √400 = 20 (cm)
Δ ABC vuông có đường cao AH:
=> AB^2 = BH.BC
=> BH = AB^2/BC = 12^2/20 = 7.2 (cm)
=> CH = 20 - 7.2 = 12.8 (cm)
Ta có: AD là phân giác
=> BD/CD = AB/AC
=>( BD + CD)/CD = (AB + AC)/AC
=> 20/CD = 28/16
=> CD = 80/7
=> HD = CH - CD
= 12.8 - (80/7)
= 48/35 (cm)
(HC tự tính nha)
Theo Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=20\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{144}{20}=\dfrac{36}{5}\)cm
=> CH = BC - BH = \(20-\dfrac{36}{5}=\dfrac{64}{5}\)cm
Vì AD là p/g : \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{CD}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{20}{12+16}=\dfrac{5}{7}\)
\(\Rightarrow BD=\dfrac{5}{7}.12=\dfrac{60}{7}\)cm
=> HD = BD - BH = \(\dfrac{60}{7}-\dfrac{36}{5}=\dfrac{48}{35}\)cm
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
nên BC=20(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=7.2\left(cm\right)\\CH=12.8\left(cm\right)\end{matrix}\right.\)
Lời giải:
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm)
Áp dụng tính chất tia phân giác:
$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$
Mà: $BD+DC=BC=20$
$\Rightarrow BD=20:(3+4).3=\frac{60}{7}$ (cm)
Theo hệ thức lượng của tam giác vuông:
$HB=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2$ (cm)
$CH=BC-HB=20-7,2=12,8$ (cm)
$HD=BD-BH=\frac{60}{7}-7,2=\frac{48}{35}$ (cm)
- Áp dụng định lý pitago vào tam giác ABC vuông tại A .
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
- Áp dụng hệ thức lượng vào tam giác ABC đường cao AH .
\(AH.BC=AB.AC\)
\(\Rightarrow AH=9,6\left(cm\right)\)
- Áp dụng định lý pitago vào tam giác ABH vuông tại H :
\(BH=\sqrt{AB^2-AH^2}=7,2\left(cm\right)\)
- Áp dụng định lý pitago vào tam giác ACH vuông tại H :
\(CH=\sqrt{AC^2-AH^2}=12,8\left(cm\right)\)
Ta có : AD là đường phân giác của tam giác ABC .
\(\Rightarrow\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BD+CD}=\dfrac{AB+AC}{BC}=1,4\)
=> BD = 60/7 (cm )
=> HD = BD - BH = 48/35 (cm ) .
Áp dụng định lí Pi - ta go \(\Delta ABC\)vuông tại A :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Rightarrow BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Áp dụng hẹ thức về cạnh và đường cao cho \(\Delta ABC\) có đường cao AH :
AB.AC=BC.AH
=> AH = AB.AC/BC
=> AH = 12.16/20
=> AH=9, 6( cm )
Ta có : \(\frac{AB^2}{AC^2}=\frac{BC.BH}{BC.CH}=\frac{BH}{CH}=\frac{12^2}{16^2}=\frac{9}{16}\)
\(\Rightarrow CH=\frac{16BH}{9}\)
Áp dụng hệ thức về cạnh và đường cao cho tam giác ABC và đường cao AH :
\(\Rightarrow BH.\frac{16BH}{9}=AH^2\)
=> BH2 = \(AH^2:\frac{16}{9}=9,6^2:\frac{16}{9}=51,84\)
=> BH = 7,2 ( cm )
=> CH = AH2 / BH = 12,8 ( cm )
Áp dụng tính chất của tia phân giác tam giác ABC phân giác AD
BD/AB=DC/AC
Áp dụng dãy tỉ số bằng nhau :
BD/AB=CD/AC=BD+CD/AB+AC = BC/AB+AC=5/7
=> DC/AC=5/7
=> DC = 5AC/7
=> DC = 80/7 ( cm )
Mà HD + HC = CD
=> HD = 80/7-12,8 =
Áp dụng định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC=\sqrt{12^2+16^2}=20\)
Áp dụng hệ thức lượng ta có:
\(AB^2=HB.BC\)
\(\Rightarrow\)\(HB=\frac{AB^2}{BC}=7,2\)
\(\Rightarrow\)\(HC=BC-HB=12,8\)
AD là phân giác nên ta có: \(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{20}{12+16}=\frac{5}{7}\)
suy ra: \(\frac{DB}{AB}=\frac{5}{7}\)\(\Rightarrow\)\(DB=8\frac{4}{7}\) \(\Rightarrow\)\(HD=DB-HB=1\frac{13}{35}\)
\(\frac{DC}{AC}=\frac{5}{7}\)\(\Rightarrow\)\(DC=11\frac{3}{7}\)