Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,ta có góc MAB=90°; MNB=90°(gt);(góc nội tiếp chắn 1/2đtròn)
xét tứ giác AMNB có góc MAN+MNB=90°+90°=180°
suy ra AMNB nội tiếp
b, ta có góc CAB=90°(gt); CPB=90°( góc nội tiếp chắn 1/2đtròn)
xét tứ giác CPAB có góc CAB=CPB=90°
suy ra CPAB nội tiếp ( hai góc bằng nhau cùng chắn cung CB)
suy ra góc BCA=BPA(1)
góc PBA=PCA(2)
mà góc MPN=ACB=1/2sđcung MN(3)
góc PCA=PNM=1/2sđcung PM(4)
từ 1,3 suy ra góc ACB=MPN
từ 2,4 suy ra góc PNM=PBA
xét hai tam giác PAB và PMN có
góc APB=MPN(cmt)
góc PNM=PBA(cmt)
suy ra hai tam giác đó đồng dạng (đpcm)
c, ta có góc PDN=PCN=1/2sđ cung PN(1)
góc PAC=PBC(CPAB nội tiếp)(2)
mà góc PBC+PCB=90°(3)
từ 1,2,3 suy ra góc DAC+ADE=90°
suy ra DN vuông với AC
xét hai tam giác PCM và ECG có góc C chung
góc CEG=CPM=90°
suy ra hai tam giác đó đồng dạng
suy ra PC/EC=CM/CG
suy ra PC.CG=EC.CM(đpcm)
Câu 1 và 2 chắc làm được mà đúng không?
Câu 3:
Ta có: tứ giác AFBC nội tiếp (câu b) $\Rightarrow \widehat{FBA}=\widehat{FCA}$ ( hai góc nội tiếp cùng chắn một cung) (1)
Lai có: Tứ giác ADEC nội tiếp $\Rightarrow \widehat{DEA}=\widehat{DCA}$ (hai góc nội tiếp cùng chắn một cung) (2)
Từ 1 và 2 $\Rightarrow \widehat{FBA}=\widehat{DEA} (=\widehat{FCA})$
==> sđ cung FD= sđ cung DG => FD = DG
Suy ra: $\Delta FBD=\Delta GBD$ (ch-cgv) => BF=BG
=> B nằm trên đường trung trực của đoạn thẳng FG (3)
Lại có: $\Delta FBA=\Delta GBA$ (cgc) => AF=AG
=> A nằm trên đương trung trực của đoạn thẳng FG (4)
Từ 3 và 4 => AB là đương trung trực của FG => $AB\perp FG$
Mặt khác: tam giác ABC vuông tại A=> $AB\perp AC$
Suy ra: $FG//AC$ ( cùng vuông góc với AB) đpcm
Câu 4: Ta có: $\widehat{BED}=90^{\circ} ( góc nội tiếp chắn nữa đường tròn) \Rightarrow DE\perp BE hay DE\perp BC$ (5)
$\widehat{BFD}=90^{\circ}( ........) \Rightarrow BF\perp FD hay BF\perp DC$ (6)
$\widehat{BAC}=90^{\circ} (gt) \Rightarrow CA\perp BA hay CA\perp BD$ (7)
Từ 5, 6 ,7=> DE, BF, CA đều là đương cao của tam giác DBC
=> DE,BF,CA đồng quy( đpcm)
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp