Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
1 Ta có ÐCAB = 900 ( vì tam giác ABC vuông tại A); ÐMDC = 900 ( góc nội tiếp chắn nửa đường tròn ) =>ÐCDB = 900 như vậy D và A cùng nhìn BC dưới một góc bằng 900 nên A và D cùng nằm trên đường tròn đường kính BC => ABCD là tứ giác nội tiếp.
ABCD là tứ giác nội tiếp => ÐD1= ÐC3( nội tiếp cùng chắn cung AB).
ÐD1= ÐC3 => => ÐC2 = ÐC3 (hai góc nội tiếp đường tròn (O) chắn hai cung bằng nhau)
=> CA là tia phân giác của góc SCB.
2, Xét DCMB Ta có BA^CM; CD ^ BM; ME ^ BC như vậy BA, EM, CD là ba đường cao của tam giác CMB nên BA, EM, CD đồng quy.
3,
Ta có ÐMEC = 900 (nội tiếp chắn nửa đường tròn (O)) => ÐMEB = 900.
Tứ giác AMEB có ÐMAB = 900 ; ÐMEB = 900 => ÐMAB + ÐMEB = 1800 mà đây là hai góc đối nên tứ giác AMEB nội tiếp một đường tròn => ÐA2 = ÐB2 .
Tứ giác ABCD là tứ giác nội tiếp => ÐA1= ÐB2( nội tiếp cùng chắn cung CD)
=> ÐA1= ÐA2 => AM là tia phân giác của góc DAE (2)
Từ (1) và (2) Ta có M là tâm đường tròn nội tiếp tam giác ADE
Hình bạn tự vẽ nha
a) Xét đường tròn đường kính MC
Ta có góc MDC=90 độ (góc nội tiếp chắn nửa dt)
Hay góc BDC = 90 độ
Xét tứ giác BADC có
Góc BAC =90 ĐỘ (GT)
Góc BDC =90 độ (cmt)
Mà hai đỉnh của góc này ở vị trí kề nhau do đó tứ giác BADC nt đường tròn ĐK BC
tâm O của dt là trung điểm BC
b)Xét dt đk BC có
Góc ADB=GÓC ACB (hai góc nt cùng chắn cung AB)(1)
Xét đường dt đường kính MC có góc MDN= GÓC MCN (hai góc nt cùng chắn cung MN)
hay Góc BMN = GÓC ABC (2)
Từ (1) (2) suy ra Góc ADB = Góc BDN (= góc ABC)
=> BD là phần giác góc ADN (đpcm)
c)Xét tam giác ABC có
AM=MC(GT)
OB=OC (=BÁN KÍNH CỦA DT NGOẠI TIẾP TỨ GIÁC BADC)
=> OM lad đtb của tam giác ABC
Suy ra OM//AB (t/c Đtb)
Do đó Góc OMC = 90 độ
Suy ra OM là tt của dt dk MC
d)Xét dt dk MC có
Góc MNC = 90 dộ (góc nt chắn nửa dt)
Hay góc PNC =90 độ
Xét Tam giác BPC CÓ
BD vuông góc PC ( góc BDC = 90) (cmt)
AC vuông góc với PB (góc ABC =90)(GT)
Mà hai đường thẳng này cắt nhau tại M do đó M là trực tâm của tam giắc BPC
Mặc khác PN vuông góc BC (Góc BNC = 90 ĐỘ) (cmt)
Do đó PN sẽ đi qua M => Ba điểm P,N,C thẳng hàng
--------------------------------------------------Hết------------------------------------------
Bài làm còn nhiều thiếu xót đặc biệt là cach trình bày mặt dù tớ hiểu mong các góp ý kiến đẻ mình hoàn thiện hơn
a: góc CDM=góc CEM=90 độ
=>CDEM nội tiếp
b: Xet ΔMEA vuông tại E và ΔMDB vuông tại D có
góc EMA chung
=>ΔMEA đồng dạng với ΔMDB
=>ME/MD=MA/MB
=>ME*MB=MA*MD
a. góc CDM=góc CEM=90 độ
=>CDEM nội tiếp
b. Xet ΔMEA vuông tại E và ΔMDB vuông tại D có
góc EMA chung
=>ΔMEA đồng dạng với ΔMDB
=>ME/MD=MA/MB
=>ME*MB=MA*MD
Lời giải:
1.
$\widehat{MDC}=90^0$ (góc nt chắn nửa đường tròn)
$\Leftrightarrow \widehat{BDC}=90^0$
Tứ giác $ABCD$ có $\widehat{BAC}=\widehat{BDC}=90^0$ và cùng nhìn cạnh $BC$ nên là tgnt.
Do $ABCD$ nội tiếp nên $\widehat{BCA}=\widehat{BDA}$
Mà $\widehat{BDA}=\widehat{MCS}$ (do $MDSC$ nội tiếp)
$\Rightarrow \widehat{BCA}=\widehat{MCS}$
$\Rightarrow CA$ là phân giác $\widehat{BCS}$
2.
Gọi $T$ là giao điểm của $BA$ và $EM$
Xét tam giác $BTC$ có $TE\perp BC$ (do $\widehat{MEC}=90^0$) và $CA\perp BT$ và $TE, CA$ giao nhau tại $M$ nên $M$ là trực tâm tam giác $BTC$
$\Rightarrow BM\perp TC$.
Mà $BM\perp DC$ nên $TC\parallel DC$ hay $T,D,C$ thẳng hàng
Do đó $BA, EM, DC$ đồng quy tại $T$
3.
Vì $ABCD$ nt nên $\widehat{MAD}=\widehat{CAD}=\widehat{DBC}=\widehat{MBE}$
Dễ cm $BAME$ nội tiếp cho $\widehat{A}+\widehat{E}=90^0+90^0=180^0$ nên $\widehat{MBE}=\widehat{EAM}$
Do đó: $\widehat{MAD}=\widehat{EAM}$ nên $AM$ là tia phân giác $\widehat{EAM}(*)$
Mặt khác:
Cũng do $MECD,ABCD$ nội tiếp nên:
$\widehat{ADM}=\widehat{ADB}=\widehat{ACB}=\widehat{MCE}=\widehat{MDE}$
$\Rightarrow DM$ là tia phân giác $\widehat{ADE}(**)$
Từ $(*); (**)\Rightarrow M$ là tâm đường tròn nội tiếp $ADE$.
Hình vẽ: