K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\)

Do đó: ΔAHB\(\sim\)ΔCHA

b: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(1\right)\)

Xet ΔAHC vuông tại H có HK là đường cao

nên \(AK\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

hay AB/AK=AC/AI

Xét ΔABC vuông tại A và ΔAKI vuông tại A có

AB/AK=AC/AI

Do đó: ΔABC\(\sim\)ΔAKI

d: \(IB\cdot BC\cdot CK=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)

\(=\dfrac{\left(BH\cdot CH\right)^2}{AB\cdot AC}\cdot BC=\dfrac{AH^4}{AH\cdot BC}\cdot BC=AH^3\)

10 tháng 9 2018

Bạn tham khảo bài làm của bạn Nguyễn Võ Thảo Vy phía dưới nhé:

Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath

22 tháng 11 2017

Bạn vẽ hình đi mk làm cho nha

1 tháng 5 2018

câu b ntn v ạ

12 tháng 11 2019

A C B M H E D O I

Cm: a) Ta có: BA \(\perp\)AC (gt)

                        HD // AB (gt)

=> HD \(\perp\)AC => \(\widehat{HDA}=90^0\)

Ta lại có: AC \(\perp\)AB (gt)

   HE // AC (gt)

=> HE \(\perp\)AB => \(\widehat{HEA}=90^0\)

Xét tứ giác AEHD có: \(\widehat{A}=\widehat{AEH}=\widehat{HDA}=90^0\)

=> AEHD là HCN => AH = DE

b) Gọi O là giao điểm của AH và DE

Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => \(\widehat{OAD}=\widehat{ODA}\) (1)

Xét t/giác ABC vuông tại A có AM là đường trung tuyến

-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => \(\widehat{MAC}=\widehat{C}\)

Ta có: \(\widehat{B}+\widehat{C}=90^0\) (phụ nhau)

  \(\widehat{C}+\widehat{HAC}=90^0\) (phụ nhau)

=> \(\widehat{B}=\widehat{HAC}\) hay \(\widehat{B}=\widehat{OAD}\) (2) 
Từ (1) và (2) => \(\widehat{ODA}=\widehat{B}\)

Gọi I là giao điểm của MA và ED

Xét t/giác IAD có: \(\widehat{IAD}+\widehat{IDA}+\widehat{AID}=180^0\) (tổng 3 góc của 1 t/giác)

=> \(\widehat{AID}=180^0-\left(IAD+\widehat{IDA}\right)\)

hay \(\widehat{AID}=180^0-\left(\widehat{B}+\widehat{C}\right)=180^0-90^0=90^0\)

=> \(AM\perp DE\)(Đpcm)

c) (thiếu đề)