K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

1) Ta có BC = BD + DC = 15 + 20 = 35cm 
AB / AC = BD / DC = 15 / 20 = 3/4 
<=> AB = 3/4.AC 
Áp dụng Pytago : 
AB² + AC² = 35² 
<=> (3/4AC)² + AC² = 35² 
<=> 0,5625AC² + AC² = 35² 
<=> 1,5625AC² = 35² 
<=> AC² = 35² / 1,5625 = 784 
<=> AC = 28 cm 
=> AB = 3/4 . 28 =21 cm 
Cos C = 21 / 35 = 3/5 
AD² = AC² + DC² - 2.AC.DC.cosC 
<=> AD² = 28² + 20² - 2.28.20.3/5 
<=> AD = 16√2 cm = 22,63 cm 

quá dễ dàng

động não đi

26 tháng 6 2016

áp dụng các hệ thức trong tam giác vuông ta có

\(AH^2=HB.HC\)

theo bài ra ta có

\(\frac{HB}{HC}=\frac{1}{4}\)=> \(\frac{HB}{1}=\frac{HC}{4}\) => \(\left(\frac{HB}{1}\right)^2=\left(\frac{HC}{4}\right)^2\) => \(\frac{HB^2}{1}=\frac{HC^2}{16}\)

áp dụng các tính chất của tỉ lệ thức ta có

\(\frac{HB^2}{1}=\frac{HC^2}{16}=\frac{HB.HC}{16}=\frac{AH^2}{16}=\frac{12^2}{16}=9\)

=> \(\frac{HB^2}{1}=9=>HB=3\)

=> \(\frac{HC^2}{16}=9=>HC=12\)

27 tháng 6 2016

Áp dung hệ thức lượng trong tam giác vuông, ta có: \(AH^2=BH.CH\Rightarrow AH^2=4BH^2\)

\(\Rightarrow BH=6\left(cm\right),CH=24\left(cm\right)\)

Chúc em học tốt :)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{9}{49}\)

\(\Leftrightarrow BH=\dfrac{9}{49}CH\)

Ta có: \(BH\cdot CH=AH^2\)

\(\Leftrightarrow CH^2\cdot\dfrac{9}{49}=42^2=1764\)

\(\Leftrightarrow CH^2=9604\)

\(\Leftrightarrow CH=98\left(cm\right)\)

\(\Leftrightarrow BH=18\left(cm\right)\)

1 tháng 2 2018

Hỏi đáp Toán

3 tháng 8 2016

cảm ơn nhé

1 tháng 2 2018

Hỏi đáp Toán

1 tháng 2 2018

Hỏi đáp Toán

AB:AC=3/7

=>HB/HC=9/49

=>HB=9/49HC

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{9}{49}=36\)

=>\(HC^2=196\)

=>HC=14(cm)

=>HB=18/7(cm)

=>BC=116/7(cm)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=\sqrt{\dfrac{18}{7}\cdot\dfrac{116}{7}}=\dfrac{6\sqrt{58}}{7}\left(cm\right)\\AC=\sqrt{CH\cdot BC}=2\sqrt{58}\left(cm\right)\end{matrix}\right.\)