K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

hình đây:

26 tháng 10 2017

A B C H M N I K O hình này nhìn đúng hơn đấy bạn và mình giải đây

a. ta có: AMH = 90(M là hình chiếu vuông góc [do chỗ này đề sai nên mình sửa lại] của H lên AB)

             ANH = 900 (N là hình chiếu vuông góc của H lên AC)

             MAN = 900 (tam giác ABC vuông A)

=> tg (tứ giác) MHNA là hcn (hình chữ nhật)

=> AH = MN (trong hcn có tính chất của htc [hình thang cân] và htc có tính chất 2 đc (đường chéo) bằng nhau)

còn b với c thì mình chưa biết làm :v

11 tháng 7 2023

A B C P Q K H

a/

\(AQ\perp AB;PH\perp AB\) => AQ//PH

\(AP\perp AC;QH\perp AC\) => AP//QH

=> APHQ là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có \(\widehat{A}=90^o\)

=> APHQ là hình chữ nhật (Hình bình hành có 1 góc vuông là HCN)

b/

Xét tg vuông QHC có

KH=KC (gt)

\(\Rightarrow QK=\dfrac{AC}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

Mà \(KH=KC=\dfrac{HC}{2}\)

=> QK=KH => tg KQH cân tại K

14 tháng 11 2023

Sửa đề: K là trung điểm của CH

a: Xét tứ giác APHQ có

\(\widehat{APH}=\widehat{AQH}=\widehat{PAQ}=90^0\)

Do đó: APHQ là hình chữ nhật

b: ΔCQH vuông tại Q

mà QK là đường trung tuyến

nên \(QK=KH=KC=\dfrac{CH}{2}\)

Xét ΔKQH có KQ=KH

nên ΔKQH cân tại K

c: \(\widehat{KQP}=\widehat{KQH}+\widehat{PQH}\)

\(=\widehat{KHQ}+\widehat{PAH}\)

\(=\widehat{HAB}+\widehat{HBA}=90^0\)

=>KQ\(\perp\)QP(1)

ΔHPB vuông tại P

mà PI là đường trung tuyến

nên PI=IH=IB

=>ΔPIH cân tại I

\(\widehat{QPI}=\widehat{QPH}+\widehat{IPH}\)

\(=\widehat{QAH}+\widehat{IHP}\)

\(=\widehat{HAC}+\widehat{HCA}=90^0\)

=>QP\(\perp\)PI(2)

Từ (1) và (2) suy ra PI//QK

4 tháng 12 2023

Cảm ơn bạn nhiều

 

29 tháng 12 2018

Ai trả lời thì 3 k

29 tháng 12 2018

đúng nha
 

a: Xét ΔABC có

M,N lần lượt là trung điểm của AB và AC

nên MN là đường trung bình

=>MN//BC và MN=BC/2

=>MN//BE và MN=BE

=>BMNE là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là đường trung tuyến

nên HM=AM(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AN(2)

Từ (1)và (2) suy ra AH là đường trung trực của MN

Xét ΔABC có 

E,M lần lượt là trung điểm của CB và BA

nên ME là đường trung bình

=>ME=CA/2=NH

Xét tứ giác MNEH có MN//EH

nên MNEH là hình thang

mà ME=NH

nên MNEH là hình thang cân