K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

A B C H

Có: góc ABC + góc BAH = 900

      góc HAC + góc BAH = 900

=> góc ABC = góc HAC

Xét tam giác AHC và tam giác BAC có:

     góc ABC = góc HAC (chứng minh trên)

     góc AHC = góc BAC (=900)

=> tam giác AHC đồng dạng với tam giác BAC

\(\Rightarrow\frac{AH}{AB}=\frac{HC}{AC}\Rightarrow\frac{AH}{HC}=\frac{AB}{AC}=\frac{5}{7}\Rightarrow HC=\frac{7}{5}.AH=\frac{7}{5}.15=21cm\)

Ta có: \(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{15^2}{21}=\frac{75}{7}cm\)

                                                         Vậy HB = 75/7 cm , HC = 21cm

3 tháng 8 2019

\(HB.HC=15^2=225\)

Ta có : \(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.BH\end{cases}\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}\Rightarrow\hept{\begin{cases}\frac{HB}{HC}=\frac{25}{49}\\HB.HC=225\end{cases}\Rightarrow}\hept{\begin{cases}HB.HC.\frac{HB}{HC}=\frac{25}{49}.225\\HB.HC=225\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}HB^2=\frac{5625}{49}\\HB.HC=225\end{cases}\Rightarrow\hept{\begin{cases}HB=\frac{75}{7}\\HC=21\end{cases}}}\)

3 tháng 8 2019

cảm ơn ạ

7 tháng 10 2020

Hình bạn tự vẽ

Ta có: \(\frac{HB}{HC}=\frac{1}{4}\Leftrightarrow HC=4HB\)

Thay vào ta được: \(HB+HC=BC\)

\(\Leftrightarrow HB+4HB=15\)

\(\Leftrightarrow5HB=15\)

\(\Rightarrow HB=3\left(cm\right)\)

\(\Rightarrow HC=4\cdot3=12\left(cm\right)\)

Từ đó ta dễ dàng tính được: \(AH^2=BH\cdot HC=3\cdot12=36\)

\(\Rightarrow AH=6\left(cm\right)\)

Vậy AH = 6cm

7 tháng 10 2020

Đặt \(\frac{HB}{1}=\frac{HC}{4}\)thì HB=k, HC=4k.

Ta có: \(AH^2=HB.HC\Rightarrow14^2=4k^2\Rightarrow14=2k\Rightarrow k=7\)

Do đó: HB=7(cm) , HC= 4.7=28(cm), BC=7+28=35(cm)

29 tháng 7 2016

Ta có: góc BAH + HAC = 900

           góc ACH + HAC = 900

=> góc BAH = góc ACH

Xét tam giác AHB và tam giác CAB ta có:

    góc AHB = góc CAB (=900)

    góc BAH = góc BCA (chứng minh trên)

=> tam giác AHB đồng dạng với tam giác CAB (gg) (1)

\(\Rightarrow\frac{AH}{AC}=\frac{HB}{AB}\Rightarrow HB=\frac{AH.AB}{AC}=AH.\frac{AB}{AC}=30.\frac{5}{6}=25cm\)

\(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{30^2}{25}=36cm\) 

                                                     Vậy BH = 25cm. CH = 36cm

29 tháng 7 2016

ta có thể đơn giản xét tam giác BAH ~ tam giác ACH

=>AH/CH= BH/AH= AB/AC

=> 30/CH= BH/30= 5/6

=> CH= 30.6:5= 36

=> BH= 5.30:6= 25

18 tháng 7 2020

Ta có: \(\frac{AC}{AB}=\frac{5}{12}\)

\(\Leftrightarrow\frac{AC^2}{AB^2}=\frac{25}{144}\)

\(\Leftrightarrow\frac{AC^2+AB^2}{AB^2}=\frac{25+144}{144}\)

\(\Leftrightarrow\frac{BC^2}{AB^2}=\frac{169}{144}\)

\(\Leftrightarrow\frac{BC}{AB}=\frac{13}{12}\)\(\Leftrightarrow\frac{26}{AB}=\frac{13}{12}\Leftrightarrow AB=\frac{26\times12}{13}=24\left(cm\right)\)

\(\Rightarrow\frac{AC}{24}=\frac{5}{12}\Leftrightarrow AC=\frac{24\times5}{12}=10\left(cm\right)\)

Xét \(\Delta ABC\)\(\widehat{A}=90^0,AH\perp BC\)

\(AB^2=BH\times BC\)( Hệ thức lượng trong tam giác vuông )

 \(\Leftrightarrow24^2=BH\times26\)

\(\Leftrightarrow576=BH\times26\)

\(\Leftrightarrow BH=\frac{288}{13}\left(cm\right)\)

\(AC^2=CH\times CB\)( hệ thức lượng trong tam giác vuông )

\(\Leftrightarrow10^2=CH\times26\)

\(\Leftrightarrow100=CH\times26\)

\(\Leftrightarrow CH=\frac{50}{13}\left(cm\right)\)

Đáp số \(AB=24cm\)\(AC=10cm\)

            \(BH=\frac{288}{13}cm\)\(CH=\frac{50}{13}cm\)