K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Ta có: D và H đối xứng nhau qua AB

nên AB là đường trung trực của DH

Suy ra: AH=AD

Xét ΔAHD có AH=AD

nên ΔAHD cân tại A

mà AB là đường trung trực ứng với cạnh đáy HD

nên AB là tia phân giác của \(\widehat{HAD}\)

Ta có: H và E đối xứng nhau qua AC

nên AC là đường trung trực của HE

Suy ra: AE=AH

Xét ΔAEH có AE=AH

nên ΔAEH cân tại A

mà AC là đường trung trực ứng với cạnh đáy HE

nên AC là tia phân giác của \(\widehat{EAH}\)

Ta có: \(\widehat{DAE}=\widehat{EAC}+\widehat{HAC}+\widehat{HAB}+\widehat{DAB}\)

\(=2\cdot\left(\widehat{HAC}+\widehat{HAB}\right)\)

\(=2\cdot90^0=180^0\)

Suy ra: D,A,E thẳng hàng

mà AE=AD(=AH)

nên A là trung điểm của DH

2: Ta có: DE=AD+AE

nên DE=AH+AH

hay DE=2AH

30 tháng 6 2017

Hình chữ nhật

11 tháng 12 2021

cho tam giác ABC vuông tại A đường cao AH ( H thuộc cạnh BC) .gọi D, E theo thứ tự chân đường vuông góc kẻ từ H đến AB và AC .Gọi M, N theo thứ tự là trung điểm của BH và CH .Gọi I là giao điểm của AH và ED 

1: cm tam giác DHE là tam giác vuông.Biết AB=3,AC=4, tính 

a: bán kính của đường tròn ngoại tiếp tam giác DHE 

b: cos ACH

2: cm ED là tiếp tuyến của đường tròn đg kính CH

3: cm I thuộc đg tròn đg kính Mn

5 tháng 9 2018

░░█▒▒▒▒░░░░▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒█ ░░░░█▒▒▄▀▀▀▀▀▄▄▒▒▒▒▒▒▒▒▒▄▄▀▀▀▀▀▀▄ ░░▄▀▒▒▒▄█████▄▒█▒▒▒▒▒▒▒█▒▄█████▄▒█ ░█▒▒▒▒▐██▄████▌▒█▒▒▒▒▒█▒▐██▄████▌▒█ ▀▒▒▒▒▒▒▀█████▀▒▒█▒░▄▒▄█▒▒▀█████▀▒▒▒█ ▒▒▐▒▒▒░░░░▒▒▒▒▒█▒░▒▒▀▒▒█▒▒▒▒▒▒▒▒▒▒▒▒█ ▒▌▒▒▒░░░▒▒▒▒▒▄▀▒░▒▄█▄█▄▒▀▄▒▒▒▒▒▒▒▒▒▒▒▌ ▒▌▒▒▒▒░▒▒▒▒▒▒▀▄▒▒█▌▌▌▌▌█▄▀▒▒▒▒▒▒▒▒▒▒▒▐ ▒▐▒▒▒▒▒▒▒▒▒▒▒▒▒▌▒▒▀███▀▒▌▒▒▒▒▒▒▒▒▒▒▒▒▌ ▀▀▄▒▒▒▒▒▒▒▒▒▒▒▌▒▒▒▒▒▒▒▒▒▐▒▒▒▒▒▒▒▒▒▒▒█ ▀▄▒▀▄▒▒▒▒▒▒▒▒▐▒▒▒▒▒▒▒▒▒▄▄▄▄▒▒▒▒▒▒▄▄▀ ▒▒▀▄▒▀▄▀▀▀▄▀▀▀▀▄▄▄▄▄▄▄▀░░░░▀▀▀▀▀▀ ▒▒▒▒▀▄▐▒▒▒▒▒▒▒▒▒▒▒▒▒▐ ▒█▀▀▄ █▀▀█ █▀▀█ █▀▀█   ▀▀█▀▀ █░░█ █▀▀   ▒█▀▀█ █▀▀█ █▀▀ █▀▀ ▒█░▒█ █▄▄▀ █░░█ █░░█   ░▒█░░ █▀▀█ █▀▀   ▒█▀▀▄ █▄▄█ ▀▀█ ▀▀█ ▒█▄▄▀ ▀░▀▀ ▀▀▀▀ █▀▀▀   ░▒█░░ ▀░░▀ ▀▀▀   ▒█▄▄█ ▀░░▀ ▀▀▀ ▀▀▀ ║████║░░║████║████╠═══╦═════╗ ╚╗██╔╝░░╚╗██╔╩╗██╠╝███║█████║ ░║██║░░░░║██║╔╝██║███╔╣██══╦╝ ░║██║╔══╗║██║║██████═╣║████║ ╔╝██╚╝██╠╝██╚╬═██║███╚╣██══╩╗ ║███████║████║████║███║█████║

5 tháng 9 2018

rap ng bn 4 chan

1: Ta có: H và D đối xứng nhau qua AB

nên AB là đường trung trực của HD

Suy ra: \(AH=AD\left(1\right)\)

Ta có: H và E đối xứng nhau qua AC

nên AC là đường trung trực của HE

Suy ra: \(AH=AE\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra AD=AE

Xét ΔADE có AD=AE

nên ΔADE cân tại A

11 tháng 12 2017

A B C M H F D K I G

Câu a và b cô hướng dẫn:

a) Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

b)  Tứ giác FDEA là hình bình hành nên AF // DE

c) Xét tam giác AFH có AD là đường cao đồng thời trung tuyến nên nó là tam giác cân.

Vậy thì AD là tia phân giác hay \(\widehat{FAD}=\widehat{DAH}\)

Do tam giác ABC vuông tại A, M là trung điểm BC nên  MA = MB = MC hay \(\widehat{BAM}=\widehat{ABM}\)

Vậy thì \(\widehat{FAD}+\widehat{BAM}=\widehat{DAH}+\widehat{ABM}=90^o\)

\(\Rightarrow\widehat{FAM}=90^o\)

Vậy tam giác AFM vuông.

c) Gọi giao điểm của AM và DE là G.

Do FA // DE mà AM vuông góc FA nên AM vuông góc DE.

Vậy thì ta có ngay AFDE là hình chữ nhật.

Suy ra KG giao AD tại trung điểm mỗi đường hay I cũng là trung điểm KG.

Vậy thì AM, DE và KI đồng quy tại điểm G.

16 tháng 12 2017

Em cảm ơn ạ !

25 tháng 11 2019

A B C M D E H K O I

a) Xét tứ giác ADME có \(\widehat{DAE}=\widehat{AEM}=\widehat{ADM}=90^0\)

=> ADME là hình chữ nhật

=> AM= DE

b) Gọi O là giao điểm của AM và DE => OA = OM = OD = OE (2)

Do ADME là HCN => DA = ME

=> 2DA = 2ME hay DA + AI = EM + MK (vì DA = AI; ME = MK)

=> DI = EK

Xét tứ giác DIEK có DI = EK (cmt)

     DI// EK (vì CEMD là HCN)

=> DKEI là hình bình hành

Do O là trung điểm của DE => KI đi qua O

=> DE cắt IK tại O và OD = OE;  OK = OI (1) 

Từ (1) và (2) => DE; AM; IK đồng quy tại trung điểm O của mỗi đường

c) don't know, tự làm