K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

sai đề bài bạn ạ

17 tháng 6 2018

vì tam giác ABC vuông tại A rùi nên AC là đường cao, chỉ có đg cao CH thui bạn

11 tháng 9 2015

a. Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu: Tam giác AHB có \(HB^2=BE\cdot BA,\) tam giác AHC có  
\(HC^2=CF\cdot CA\to\frac{BE}{FC}\cdot\frac{AB}{AC}=\frac{HB^2}{HC^2}=\frac{\left(HB\cdot BC\right)^2}{\left(HC\cdot BC\right)^2}=\frac{AB^4}{AC^4}\to\frac{BE}{CF}=\frac{AB^3}{AC^3}.\)

b.

Cách giải lớp 9

 Ta có \(\frac{BE}{BH}\cdot\frac{CF}{CH}\cdot\frac{BC}{AH}=\cos B\cdot\cos C\cdot\left(\frac{HB}{AH}+\frac{HC}{AH}\right)=\cos B\cdot\cos C\cdot\left(\tan B+\tan C\right)\)

\(=\sin B\cdot\cos C+\cos B\cdot\sin C=\sin^2B+\cos^2B=1.\) (Ở đây chú ý rằng \(\cos B=\sin C,\sin B=\cos C\) ). 

Suy ra \(BE\cdot CF\cdot BC=\left(BH\cdot CH\right)\cdot AH=AH^2\cdot AH=AH^3.\)

Cách giải lớp 8

\(\frac{BE}{BH}\cdot\frac{CF}{CH}\cdot\frac{BC}{AH}=\frac{BA}{BC}\cdot\frac{CA}{BC}\cdot\frac{BC}{AH}=\frac{AB\cdot AC}{BC\cdot AH}=1\to BE\cdot CF\cdot BC=\left(BH\cdot CH\right)\cdot AH=AH^3.\)

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7.2\left(cm\right)\)

c: CH=BC-BH=20-7,2=12,8(cm)

Xét ΔACH vuông tại H có \(\sin C=\dfrac{AH}{AC}=\dfrac{9.6}{16}=\dfrac{3}{5}\)

nên \(\widehat{C}=37^0\)

=>\(\widehat{CAH}=53^0\)

d: XétΔABC có AD là đường phân giác

nên BD/AB=CD/AC

=>BD/12=CD/16

hay BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

Do đó: BD=60/7(cm); CD=80/7(cm)