Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M E F
c, xét tg AEB và tg AFC có : AB = AC do tg ABC cân tại A (Gt)
^ABC = ^ACB do tg ABC cân tại A (gt)
CF = BE (gt)
=> tg AEB = tg AFC (c-g-c) (1)
a, (1) => AF = AE
xét tg AFM và tg AEM có : AM chung
FM = ME do CM = BM; CF = BE
=> tg AFM = tg AEM (c-c-c)
b, tg AFM = tg AEM (Câu b)
=> ^AMF = ^AME
mà ^AMF + ^AME = 180 (kề bù)
=> ^AME = 90
=> AM _|_ BC
d, có M là trđ tính đc MB
dùng pytago
A B C M E F 1 2 1 2 2 1 1 2 3 4
GT : \(\Delta\)ABC cân tại A ; BM = CM = 1/2 BC; lấy \(E\in BM;F\in MC\)sao cho BE = CF
KL :a) \(\Delta\)AEM = \(\Delta\) AFM
b) \(AM\perp BC\)
c) \(\Delta AEB=\Delta AFC\)
d) AB = 10 ; BC = 12 => AM = ... cm
Bài làm
a) Ta có : BM = MC (gt)
BE = FC (gt)
=> BM - BE = MC - FC
=> ME = MF
Xét tam giác ABM và tam giác ACM có
+) BM = CM
+) AM chung => \(\Delta ABM=\Delta ACM\)(C.C.C)
+) AB = AC => Góc M1 = Góc M2 (góc tương ứng)
AE = AF(cạnh tương ứng)
Xét tam giác AEM và tam giác AFM có
+) góc M1 = góc M2
+) AM chung => \(\Delta AEM=\Delta AFM\) (c.g.c)
+) ME = MF => Góc E2 = Góc F1
b) Vì Góc M1 = Góc M2 (cmt)
mà Góc M1 + Góc M2 = 180o
=> Góc M1 = Góc M2 = 90o
=> \(AM\perp BC\)
c) Vì Góc E2 = Góc F1 (câu a)
mà Góc E1 + Góc E2 = Góc F1 + Góc F2 (= 180o)
=> Góc E1 = Góc F2
Xét tam giác AEB và tam giác AFC có :
+) BE = FC (gt)
+) Góc E1 = Góc F2 (cmt) => \(\Delta AEB=\Delta AFC\)(c.g.c)
+) AE = AF (câu a)
d) Vì Góc M1 = Góc M2 = 90o (câu b)
=> \(\Delta AMB\)vuông tại M
=> \(BM^2+AM^2=AB^2\)(ĐỊNH LÝ PYTAGO) (1)
Lại có BM = MC = 1/2 BC (gt)
=> BM = MC = 1/2 . 12 = 6 cm
Khi đó (1) <=> 62 + AM2 = 102
=> AM2 = 64
=> AM = 8 cm
A B C E F M D N
a) Vì \(\Delta ABC\) cân tại A nên AB = AC và Góc B = Góc C. Vì \(BE\perp AC;CF\perp AB\left(gt\right)\)
Nên ^AFC = ^BFC = ^AEB = ^CEB = 900. Xét \(\Delta AFC\) và \(\Delta AEB\) có :
^AFC = ^AEB = 900; \(AC=AB\left(cmt\right)\); Góc O chung. \(\Rightarrow\Delta AFC=\Delta AEB\left(ch.gn\right)\)
b) \(\Rightarrow AF=AE\) ( 2 cạnh tương ứng ). Có ^AFC = ^AEB hay ^AFD = ^AED = 900
Xét \(\Delta AED\) và \(\Delta AFD\) có : ^AFD = ^AED = 900 ( cmt ) ; \(AF=AE\left(cmt\right);AD\) chung
\(\Rightarrow\Delta AED=\Delta AFD\left(ch.cgv\right)\Rightarrow\) ^EAD = ^FAD ( tương ứng ) nên AD là phân giác ^FAE ( đpcm )
c) Gọi giao điểm của AM và DE tại N. Xét \(\Delta AEN\) và \(\Delta AFN\) có :
\(AE=AF\left(cmt\right)\); ^EAN = ^FAN ( ^EAD = ^FAD ); \(AN\) chung.
\(\Rightarrow\Delta AEN=\Delta AFN\left(c.g.c\right)\Leftrightarrow\) ^ANE = ^ANF ( tương ứng ). Mà ^ANE + ^ANF = 1800 ( kề bù )
=> ^ANE = ^ANF = 1800 : 2 = 900 \(\Leftrightarrow AN\perp FE\). Mà N là giao điểm của AM và FE
Nên N thuộc AM \(\Rightarrow AN\perp FE\Leftrightarrow AM\perp FE\left(đpcm\right)\)
Ờ ! viết bằng nhau ''='' thật đấy, nhưng trên hình kí hiệu j đâu mà viết nó ''='' nhau
LOGIC ?
Cái deck j vại, bn nhìn thấy ^O ở đâu thế bn Minh !
Ý thức ko mua đc ''='' tiền.
a) BD; CE là đường cao => tam giác ABD và tam giác ACE vuông : có: AB = AC (do tam giác ABC cân tại A ); góc A chung
=> tam giác ABD = ACE (cạnh huyền - góc nhọn )
b) Tam giác BDC vuông tại D có trung tuyến DH ứng với cạnh huyền BC => DH = HC = BC/ 2
=> tam giác HDC cân tại H
c) sửa đề: chứng minh: DM = MC
Tam giác DHC cân tại H có HM là đuơng cao nên đông thời là đường trung tuyến => M là TĐ của DC=> DM = MC
d) Tam giác HND vuông tại M có: MI là trung tuyến => MI = HI = HD/2
=> tam giác IHM cân tại I => góc IHM = IMH
lại có HM là p/g của góc DHC => góc IHM = MHC
=> góc IMH = MHC mà 2 góc này ở vị trí SLT => MI // HC mà HC vuông góc với AH
=> MI vuông góc với AH
bạn Nobita Kun giải bài không theo điểm như đề bài cho, ý c đề bài đúng rồi ạ. ý d thì bạn hiểu nhầm đề rồi, bạn xem lại điểm I nhé