Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính tỷ lệ DABD trong tam giác vuông cân ABC, chúng ta cần sử dụng định lí đồng dạng tam giác.
Gọi E là trung điểm của BC, M là trung điểm của AC. Theo định lí đồng dạng tam giác, ta có:
△ABD∼△AMC
Bằng cách này, chúng ta có:
DA/BD=AC/MC
Nhưng MC là trung tuyến của tam giác ABC, vì vậy MC bằng một nửa độ dài AB.
Vậy nên:
DA/BD=2/1
Do đó, BD chiếm một nửa độ dài của DA trong tam giác ABC vuông cân ở C.
Bùi Như Lạc cậu cũng hay đi bình phẩm người khác nhỉ chắc cậu hoàn hảo lắm à
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MB
=>ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{MBA}\)
Ta có: \(\widehat{DAB}+\widehat{MAB}=\widehat{DAM}=90^0\)
\(\widehat{HAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)
mà \(\widehat{MAB}=\widehat{HBA}\)(cmt)
nên \(\widehat{DAB}=\widehat{HAB}\)
=>AB là phân giác của góc DAH
A B C E F I M
a/ Xét tg vuông ABC có
BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)
b/ Xét tg vuông AEF và tg vuông AFM có
\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)
Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)
Xét tg MBE và tg MFC có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)
=> tg MBE đồng dạng với tg MFC (g.g.g)
c/ Xét tg vuông ABC và tg vuông AFE có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
=> tg ABC đông dạng với tg AFE
\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)
d/
a: Xét ΔBAD vuông tại A và ΔBHA vuông tại H có
góc ABD chung
=>ΔBAD đồng dạng với ΔBHA
=>BA/BH=BD/BA
=>BA^2=BH*BD
b: Xét ΔAMB có IE//MB
nên IE/MB=AI/AM
Xét ΔAMC có ID//MC
nên ID/MC=AI/AM
=>IE/MB=ID/MC
mà MB=MC
nên IE=ID
=>I là trung điểm của ED
c: DE//BC
=>DI/BM=HI/HM
=>EI/CM=HI/HM
mà góc EIH=góc HMC
nên ΔIEH đồng dạng với ΔMCH
=>góc IHE=góc MHC
=>C,H,E thẳng hàng
Để tính tỷ lệ DABD trong tam giác vuông cân ABC, chúng ta cần sử dụng định lí đồng dạng tam giác.
Gọi E là trung điểm của BC, M là trung điểm của AC. Theo định lí đồng dạng tam giác, ta có:
△ABD∼△AMC
Bằng cách này, chúng ta có:
DA/BD=AC/MC
Nhưng MC là trung tuyến của tam giác ABC, vì vậy MC bằng một nửa độ dài AB.
Vậy nên:
DA/BD=2/1
Do đó, BD chiếm một nửa độ dài của DA trong tam giác ABC vuông cân ở C.