K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2023

 Do \(CA=CB=a\) nên \(BE.BC+AC.AK=a\left(AK+BE\right)\) 

 Ta chứng minh \(AK+BE\) không đổi. Thật vậy, gọi P là giao điểm của KE và AB. Quan sát thấy E là trực tâm tam giác ABK \(\Rightarrow KP\perp AP\) tại P. Lại có \(\widehat{KAP}=45^o\) nên suy ra \(\widehat{AKP}=45^o\). Từ đó suy ta tam giác CEK cân tại C hay \(CE=CK\)

 Từ đó \(AK+BE=AC+CK+BC-CE=2a\). Vậy \(BE.BC+AC.AK=2a^2\) không đổi (đpcm)

1 tháng 8 2017

"First" ,  ZzZ_Tiểu Thư Họ Vương_ZzZ dễ thì giải, tôi cũng đang thắc mắc

"second", đường tròn tâm O bán kính BC hay đường kính BC ?  

"third ", đã vẽ hình trực quan, và tam giác EBF ko cân, sao đây......

Dễ ợt mak cx đăg hahakkkk

4 tháng 3 2020

Tam giác ở trong hay ngoài hình tròn?

16 tháng 5 2016

a/ A và H cùng nhìn BC dưới 1 góc vuông => A và H nằm trên cùng 1 đường tròn đường kính BC

=> Tứ giác AHBC là tứ giác nội tiếp

b/ Xét tam giác vuông ABE và tam giác vuông HCE có

BE vuông góc với CH

AB vuông góc với CE

=> ^ABE=^HCE (góc có cạnh tương ứng vuông góc)

=> tam giác ABE đồng dạng với tam giác HCE

=> \(\frac{EA}{EH}=\frac{EB}{EC}\Rightarrow EA.EC=EH.EB\)

c/ Xét tam giác EBC có

BA vuông góc CE

CH vuông góc với BE

=> D là trực tâm của tam giác EBC => ED là đường cao của tam giác EBC => ED vuông góc với BC

Ta có:

ED vuông góc với BC

CE vuông góc với AB

=> ^CED = ^ABC (góc có cạnh tương ứng vuông góc)

^ABC=^ACB=(180 -  ^BAC)/2 = 45

=> ^CED=45

Xét tam giác vuông ADE có ^ADE=(180 - CED - DAE) = (180 - 45 - 90) = 45

=> ^CED = ^ADE

=> Tam giác ADE cân tại A => AD=AE

3 tháng 4 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác EBF cân tại B nên HE = HF

Tam giác AEF vuông tại A có AH là đường trung tuyến ứng với cạnh huyền nên: HA = HE = HF = (1/2).EF (tính chất tam giác vuông)

Vậy tam giác AHF cân tại H.

6 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là giao điểm của AD và BC

Vì BC là đường trung trực của AD nên theo tính chất đường trung trực ta có:

BA = BD

Tam giác BAD cân tại B có BI ⊥ AD nên BI là tia phân giác của góc ABD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác EBF có BH là tia phân giác của góc EBF và BH ⊥ EF nên tam giác EBF cân tại B.