Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S A B C H K
Do \(\Delta ABC\) là tam giác vuông cân và \(BA=BC\) nên \(\Delta ABC\) vuông cân tại \(B \) và \(AC=a\sqrt{2}\).
Trong mp (\(SAB \)) dựng \(AK\perp SB\) với \(K\in SB\)
Trong mp \((SAC)\) dựng \(AH\perp SC\) với \(H\in SC\)
Do \(SA\perp BC\) và \(AB\perp BC\) nên \(BC\perp\left(SAB\right)\)
\(\Rightarrow\) \(\left(SAB\right)\perp\left(SBC\right)\) \(\Rightarrow AK\perp\left(SBC\right)\)
\(\Rightarrow AK\perp SC\) mà \(AH\perp SC\) nên \(SC\perp\left(AHK\right)\)
\(\Rightarrow HK\perp SC\) mà \(\Delta AHK\) vuông tại \(K\) nên góc giữa 2 mp cần tính là \(\widehat{AHK}\)
Áp dụng hệ thức lượng trong tam giác vuông ta tính được \(AH=\dfrac{a\sqrt{2}}{\sqrt{3}}\) và \(AK=\dfrac{a}{\sqrt{2}}\)
\(\Rightarrow\sin\widehat{AHK}=\dfrac{\sqrt{3}}{2}\) \(\Rightarrow\cos\widehat{AHK}=\dfrac{1}{2}\)
MH =\(\sqrt{2}a\) => MC = \(2\sqrt{2}a\) và CH = \(\sqrt{6}a\)
=> BC = 2CH = \(2\sqrt{6}a\)
=> AC = BC = \(2\sqrt{6}a\)
Tam giác DBC vuông cân tại D => DH = HB = HC = \(\sqrt{6}a\) => DC = \(\sqrt{12}a\)
Tam giác MDC vuông tại M => MD2 = DC2 - MC2 = 12a2 - 8a2 = 4a2 => MD = 2a
Tam giác MAC vuông tại M => MA2 = AC2 - MC2 = 24a2 - 8a2 = 16a2 => MA = 4a
Trong mặt phẳng BCD, điểm H cách đều B, C, D => Hình cầu ngoại tiếp ABCD nằm trên đường thẳng đi qua H và vuông góc với mặt phẳng BCD. Đường thẳng này nằm trong mặt phẳng HDA (Vì đường thẳng đó vuông góc với BC nên sẽ nằm trên mặt phẳng HDA).
Đồng thời tâm hình cầu cách đều A và D => Tâm đó nằm trên đường trung trực của AD trong mặt phẳng HDA.
Ta vẽ riêng tam giác HDA ra, kẻ đường HE vuông góc với HD cắt AD tại E. Ta có HM là đường cao tam giác vuông HED nên:
HD2 = MD.DE => 6a2 = 2a. DE => DE = 3a.
Mà AD = MD + DA = 2a + 4a = 6a => AE = AD - DE = 6a -3a = 3a => Điểm E là điểm giữa của A và D.
Vậy E chính là tâm hình cầu ngoại tiếp tứ diện ABCD, bán kính hình cầu là ED = 3a => Thể tích khối cầu ....
a) Xét tam giác ABM và tam giác ACN có
AB =AC (gt)
B^=C^ (gt)
BM=CN (gt)
=> tam giác ABM = tam giác ACN (c-g-c)
=> AN=AM ( cctư)
Xét tam giác AMN có
AM=AN ( cmt)
=> tam giác AMN cân tại A