K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

gọi M là hình chiếu của E lên BC,N thuộc ME sao cho ME = MN 

 ta có tam giác BEN đều => NB = NE 
- MC//NF (đg trung bình),ngoài ra tam giác MEC vuông cân => NF = NE 
từ đó suy ra NBF cân tại N mà N^ = 60 + 90 = 150 => số đo góc NFB => số đo góc CBF

ko pt đúng ko

13 tháng 5 2019

a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:

\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)

Ủng hộmi nha

13 tháng 5 2019

A B C D E

a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm

\(\Rightarrow BC^2=AB^2+AC^2\)

     \(BC^2=6^2+8^2\)

     \(BC^2=36+64\)

    \(BC^2=100\)

    \(BC=10\)

Suy ra cạnh BC = 10cm

b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:

      \(\widehat{BAC}=\widehat{DEB}=90^o\)

         \(\widehat{B}\)chung

       \(BD=BC\left(gt\right)\)

\(\Rightarrow\Delta BAC=\Delta BED\)

Vậy...     

a: Xét ΔEAB và ΔECF có

EA=EC
góc AEB=góc CEF

EB=EF
=>ΔEAB=ΔECF

b: ΔEAB=ΔECF

=>AB=CF<BC

c: góc EBA=góc EFC

góc EFC>góc EBC

=>góc EBA>góc EBC

24 tháng 5 2019

sdfgbnerfghjrtyuiocfvbnm

24 tháng 5 2019

A B C D E F

a) Xét t/giác ABE và t/giác DBE

có AB = BD (gt)

 góc BAE = góc BDE = 900 (gt)

  BE : chung

=> t/giác ABE = t/giác DBE (ch - cgv)

b) Ta có: t/giác ABE = t/giác DBE (cmt)

=> góc ABE = góc DBE (hai góc tương ứng)

=> BE là tia p/giác của góc ABD

hay BE là tia p/giác của góc ABC

c) Xét t/giác AEF và t/giác DEC

có góc FAE = góc CDE = 900 (gt)

    AE = ED (Vì t/giác ABE = t/giác DBE)

  góc AEF = góc DEC (đối đỉnh)

=> t/giác AEF = t/giác DEC (g.c.g)

=> EF  = CF (hai cạnh tương ứng)

=> t/giác CEF là t/giác cân

d) Ta có: t/giác AEF = t/giác DEC (cmt)

=> AF = DC (hai cạnh tương ứng)

Mà AB + AF= BF

  BD + DC = BC

Và AB = BD (gt)

=> BF = BC 

=> t/giác BFC cân tại B

=> góc F = góc C = (1800 - góc B)/2 (1)

Ta lại có AB = BD (gt)

=> t/giác ABD cân tại B

=> góc BAD = góc BDA = (1800 - góc B)/2 (2)

Từ (1) và (2) suy ra góc BAD = góc F

mà góc BAD và góc F ở vị trí đồng vị

=> AD // CF (Đpcm)