Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, bc^2 = ab^2 +ac^2
<=.> (ae+eb)^2 +(af+fc)^2
<=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC
<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)
<=>EB^2 +CF^2 + AH ^2 + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF
<=>EB^2 +CF^2+3 AH^2 (đpcm)
b, cb =2a là thế nào vậy
Bài 1 :
a) Chứng minh HCN có 2 cạnh kề bằng nhau AB=AC
Ta có: ^BAC = ^ACD = ^CDB = 90* và AB = AC
=> Tứ giác ABCD là hình vuông
áp dụng pitago cho tg ACD vuông tại C, cạnh huyền AD có:
AD² = AC² + DC² = 2.CD² => AD = CD.√2
b/
tg BAM ~ tg KCM (g.g)
=> BM/KM = AM/CM
hay 6/KM = 3
--> KM = 2
----> tự suy ra các cạnh còn lại...
c/ kẻ BE vg MB tại B thì lúc đó, ta có:
^EBA = ^AMB (cùng cộng ^ABM = 90*)
^AMB = ^CMK" (cặp góc đối đỉnh)
---> ^EBA = ^CMK
mà: ^CMK = ^DBK (cặp góc đồng vị)
---> ^EBA = ^DBK
Xét 2 tg: EAB & KBD:
^KAB = ^KDB = 90*
AB = BD, cạnh hình vuông ABCD
^EBA = ^DBK (C.M.Trên)
---> 2 tg: EAB & KBD bằng nhau
---> BE = BK
Áp dụng hệ thức lượng trong tg vuông BEM có đường cao AB
---> 1/AB² = 1/BE² + 1/BM²
Mà BE = BK
--> 1/AB² = 1/BM² + 1/BK² (ĐPCM)
A B C M D F E
Kí hiệu như trên hình.
Ta có : \(AF^2+MF^2=AE^2+EM^2=AM^2\)
\(BD^2+MD^2=BF^2+MF^2=BM^2\)
\(ME^2+EC^2=MD^2+DC^2=MC^2\)
Cộng các đẳng thức trên theo vế
\(\left(BD^2+CE^2+AF^2\right)+\left(MF^2+MD^2+ME^2\right)=\left(DC^2+EA^2+FB^2\right)+\left(EM^2+MF^2+MD^2\right)\)
\(\Rightarrow BD^2+CE^2+AF^2=DC^2+EA^2+FB^2\)