K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017
a, Ta có góc FIB=90° (gt) góc FEB= góc AEB=90° (góc ntiêp chắn nửa đg tròn) => góc FIB+FEB=180° => Tứ giác BEFI nội tiếp
b) Xét tam giác AFC và tam giác ACE có: góc CAE chung Do AO vuông góc vs CD => cung AC=cung AD mà góc ACD=1/2 sđ cung AD; Góc CEA=1/2 sđ Cung AC => góc ACD=CEA (chăn 2 cung =nhau) => tam giác AFC đồng dạng với tam giác ACE (g.g) => AE/AC=AC/AF => AE.AF=AC^2 (đpcm)
c, Có ^ACF = ^CBA (phụ ^ICB) . Trong (O) có ^ACF = ^CEF (chắn hai cung bằng nhau AC và cung AD) vậy ^ACF = ^CEF < 90 nên AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CEF suy ra tâm của đường tròn đường tròn ngoại tiếp tứ giác CEF thuộc đường vuông góc AC tại C nên tâm thuộc AC cố định
 
 
28 tháng 5 2018

a) Tứ giác BEFI có: BFF = 90(gt)

BEF = BEA = 90o

=> Tứ giác BEFI là nội tiếp đường tròn đường kính BF

b)  O I F A B C D E

Vì \(AB\perp CD\)nên AC = AD

=> ACF = AEC

Xét tam giác ACF và tam giác AEC có gốc chung A và ACF = AEC

=> Tam giác ACF song song với tam giác AEC => \(\frac{AC}{AF}=\frac{AB}{AC}\)

=> AE . AF = AC2

c) Theo câu b) ta có: ACF = AEC = > AC là tiếp tuyến của đường tròn ngoại tiếp của tam giác CEF (1)

Mặt khác, ta có: ACB = 90(góc nội tiếp chứa đường tròn)

\(\Rightarrow AC\perp CB\)(2) 

Từ (1) và (2) => CB chứa đường kính của đường tròn ngoại tiếp tam giác CEF, mà CB cố định nên tâm của đường tròn ngoại tiếp tam giác CEF thuộc CB cố định E thay đổi trên cung nhỏ BC.

1 tháng 2 2021

O A B K C D E H M

a/

\(KD\perp AB\Rightarrow\widehat{CHB}=90^o\)

\(\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn)

=> M và H cùng nhìn Bc dưới 1 góc \(=90^o\) Nên M và H cùng nằm trên đường tròn đường kính AB nên B;M;H;C cùng nằm trên 1 đường tròn

b/

Ta có \(AB\perp KD\Rightarrow HK=HD\) (đường kính vuông góc với dây cung thì chia đôi dây cung)

Xét tam giác AKD có AH vừa là đường cao vừa là đường trung trực nên tg AKD là tg cân tại A => AK=AD

=> số đo cung AK = số đo cung AD (hai dây cung bằng nhau thì căng hai cung bằng nhau)

Ta có

số đo \(\widehat{KMA}=\frac{1}{2}\) số đo cung AK (góc nội tiếp đường tròn)

số đo \(\widehat{AKD}=\frac{1}{2}\) số đo cung AD (góc nội tiếp đường tròn)

Mà số đo cung AK = số đo cung AD (cmt)

\(\Rightarrow\widehat{KMA}=\widehat{AKD}\)

Xét tg AKC và tg AMK có

\(\widehat{KAM}\) chung

\(\widehat{AKD}=\widehat{AMK}\left(cmt\right)\)

=> tg AKC đồng dạng tg AMK (g.g.g) \(\Rightarrow\frac{AK}{AM}=\frac{AC}{AK}\Rightarrow AK^2=AC.AM\left(dpcm\right)\)

c/

Xét tg vuông AHC và tg vuông AMB có \(\widehat{MAB}\) chung => tg AHC đồng dạng tg AMB 

\(\Rightarrow\frac{AH}{AM}=\frac{AC}{AB}\Rightarrow AH.AB=AC.AM=AK^2\)

\(\Rightarrow\frac{R}{2}.2R=AK^2=R^2\Rightarrow AK=R\)

Xét tg vuông AHK có

\(KH^2=AK^2-AH^2=R^2-\frac{R^2}{4}=\frac{3R^2}{4}\Rightarrow KH=\frac{R\sqrt{3}}{2}\)

\(KC=CH=\frac{KH}{2}=\frac{R\sqrt{3}}{4}\)

Xét tg vuông ACH có 

\(AC^2=CH^2+AH^2=\frac{3R^2}{16}+\frac{R^2}{4}=\frac{7R^2}{16}\Rightarrow AC=\frac{R\sqrt{7}}{4}\)

Mà \(AK^2=AC.AM\Rightarrow AM=\frac{AK^2}{AC}=\frac{R^2}{\frac{R\sqrt{7}}{4}}=\frac{4R\sqrt{7}}{7}\)

Ta có \(CM=AM-AC=\frac{4R\sqrt{7}}{7}-\frac{R\sqrt{7}}{4}=\frac{9R\sqrt{7}}{28}\)

Xét tg vuông MEC và tg vuông AHC có \(\widehat{ECM}=\widehat{ACH}\) (góc đối đỉnh) => tg MEC đồng dạng tg AHC)

\(\Rightarrow\frac{CE}{AC}=\frac{MC}{CH}\Rightarrow CE=\frac{AC.MC}{CH}=\frac{\frac{R\sqrt{7}}{4}.\frac{9R\sqrt{7}}{28}}{\frac{R\sqrt{3}}{4}}=\frac{3R\sqrt{3}}{4}\)

d/ Giao đường tròn ngoại tiếp tg ACE là gia 3 đường trung trực 

Ta có A cố định, K cố định nên đường trung trực của