K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

BC=2ban kinh dg tron ngoai tiep

ta co BC^2=AB^2+AC^2=2AB^2

=>2AB^2=(2*ban kinh dg tron ngoai tiep)^2

28 tháng 1 2016

dccvkjnfv

12 tháng 1 2016

bài này dễ mà 

có nhiêu cách tính lắm 

mik sẽ trình bày một cách nha !!!

gọi O là tâm của đường tròn ngoại tiếp tam giác ABC

ta có : tam giác ABC cân taỊ A

 mà AO= 1/2 BC=\(3\sqrt{2}\)

nên AO là đường trung tuyến của tam giác ABC

ĐỒNG THỜI CŨNG LÀ ĐƯỜNG cao của tam giác ABC

ta lại có : BC=2R=2*\(3\sqrt{2}\)=6\(\sqrt{2}\)

S của tam giác ABC= 1/2 *AO*BC=1/2*\(3\sqrt{2}\cdot6\sqrt{2}\)=18

vậy diện tich tam giác là 18

11 tháng 1 2016

Đặt AB = x ; AC = y ( ĐK x ; y > 0 ) 

BC = 2R = 2.5 = 10 

Theo py ta go => x^2 + y^2 = BC^2 = 100

r = \(\frac{AB+AC-BC}{2}=\frac{x+y-10}{2}=3\Leftrightarrow x+y=16\)  (2)

Từ (1) v/s (2) => x^2 + y^2 = 100 

                  và x + y = 16 

22 tháng 3 2016

lại vio kq=14 

18 tháng 2 2017

O A B C D K

Kẽ OA cắt đường tròn tại D cắt BC tại K

Ta có OA = OB = OD = R

\(\Rightarrow\)\(\Delta ABD\) vuông tại D

\(\Rightarrow BD=\sqrt{OD^2-AB^2}=\sqrt{10^2-8^2}=6\)

Ta có OK là đường trung trực của BC nên \(\hept{\begin{cases}OK⊥BC\\BK=CK\end{cases}}\)

Ta lại có: \(S_{\Delta ABD}=\frac{1}{2}AB.BD=\frac{1}{2}AD.BK\)

\(\Rightarrow BK=\frac{AB.BD}{AD}=\frac{8.6}{10}=4,8\)

\(\Rightarrow BC=2BK=4,8.2=9,6\)

18 tháng 2 2017

Viết nhầm tùm lum hết. Do không thấy cái hình. Mà thôi nhìn hình sửa hộ luôn  nhé

3 tháng 3 2016

hình bạn tự vẽ nha

gọi o là trung điểm của BC suy ra O là tâm đường tròn ngoại tiếp tam giác ABC suy ra OA=OB=OC=15 cm suy ra BC=30cm

xét tam giác AhO có góc AHO bằng 90',

OH=\(\sqrt{\left(OA^2-AH^2\right)}\)  = 4,2

ta có : OB=OH+BH suy ra BH=OB-OH suy ra BH=10,8\(\)

XÉT tam giác ABC co góc BAC=90' , đường cao AH

\(AB^2=BH.BC\) = 10,8.30=324  suy ra AB=18

\(AC^2=BC^2-AB^2\) suy ra AC=\(\sqrt{\left(BC^2-AB^2\right)}\)  suy ra AB=24

suy ra AB+AC=42

18 tháng 11 2015

A B C O I M N P

a) Vì tam giác ABC vuông tại A nên đường tròn ngoại tiếp tam giác ABC là đường tròn đường kính BC

=> BC = 2.Rngoại tiếp  = 2.37 = 74

b) Gọi I là đường tròn nội tiếp tam giác ABC => đường tròn (I) tiếp xúc với 3 cạnh của tam giác ABC

Kẻ IM; IN; IP lần lượt vuông góc với AB; AC; BC => IM = IN = IP = bán kính  đường tròn nội tiếp = 5

Gọi a; b là độ dài 2 cạnh AB; AC 

Ta có: AB+ AC= BC(Định lí Pi ta go) => a+ b= 5476 (*)

Ta có: SABC = AB.AC : 2 = \(\frac{ab}{2}\) (1)

Mặt khác, SABC = SIAB + SIAC + SIBC = IM.AB/2 + IN.AC/2 + IP.BC/2 

\(\frac{5a}{2}+\frac{5b}{2}+\frac{5.74}{2}=\frac{5a+5b+370}{2}\) (2)

Từ (1)(2) => ab = 5a + 5b + 370 => ab = 5(a + b) + 370   (**)

Từ (*) => (a + b)2 - 2ab = 5476 . Thay (**) vào ta được:

(a+ b)2 - 10(a + b) -740 = 5476

=> (a + b)2 - 10(a+ b) - 6216 = 0 

<=> (a + b)2 - 84(a + b) + 74(a + b) - 6216 = 0 

<=> (a + b - 84).(a + b + 74) = 0 

<=> a + b - 84 = 0 (Vì a; b là độ dài đoạn thẳng nên a + b + 74 > 0)

=> a + b = 84. Thay vào (**) => ab = 790 

=> a. (84 - a) = 790 => a2 - 84a + 790 = 0 => (a- 84a + 422) -974 = 0 <=> (a - 42)2 = 974 <=> a - 42 = \(\sqrt{974}\) hoặc - \(\sqrt{974}\)

=> a = 42 + \(\sqrt{974}\) hoặc a = 42 - \(\sqrt{974}\)

=> b = ...

Vậy.....

6 tháng 12 2015

khó vậy má