K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM^2=\dfrac{BC^2}{4}\)(1)

Ta có: \(\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}\)

\(=\dfrac{BC^2}{2}-\dfrac{BC^2}{4}\)

\(=\dfrac{BC^2}{4}\)(2)

Từ (1) và (2) suy ra \(AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}\)

16 tháng 7 2016

A B C M H

Đặt góc BCA = \(\alpha\) => Góc \(ACB=2\alpha\)

Áp dụng công thức : \(sin2\alpha=2sin\alpha.cos\alpha\)

Được : \(\frac{AH}{AM}=2.\frac{AB}{BC}.\frac{AC}{BC}=\frac{2AB.AC}{BC}\)

16 tháng 7 2016

Sửa lại chút xíu  : Góc AMB =\(2\alpha\)

20 tháng 6 2019

chị giải được bài này chưa ạ??? Cho em xin cách giải được không ạ?

a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=35^2-21^2=784\)

hay AC=28cm

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{ABC}\simeq53^0\)

\(\Leftrightarrow\widehat{ACB}=37^0\)

10 tháng 11 2021

Giải nhanh giúp mình với

10 tháng 11 2021

Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=\dfrac{1}{2}BC=7,5\left(cm\right)\)

Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\\BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)

Áp dụng PTG: \(HM=\sqrt{AM^2-AH^2}=2,1\left(cm\right)\)

Vậy \(S_{AHM}=\dfrac{1}{2}HM\cdot AH=\dfrac{1}{2}\cdot2,1\cdot7,2=7,56\left(cm^2\right)\)