K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình vẽ tự vẽ nha bạn

Ta có:OBD = E

Xét \(\Delta OAC\)và \(\Delta OBE\)

QA = QB

\(ÂOC\)=\(BÔE\)

=> \(\Delta OAC=\Delta ABE\)

=> AC = BE,CO = OE

mà \(\Delta ADE\)có:DO mới là cao vừa loi tuy tuyên

=> \(\Delta CDE\)cân => CD = DE = BD + BE = BD +CA

24 tháng 4 2019

câu c cơ dùng cách lớp 7 nhé. cách lớp 8 dễ lắm nhưng mk cần làm cách lớp 7

6 tháng 2 2020

a, xét tgACO và tgBEO có: gCAO=gEBO = 90 độ

                                            OA=OB (O là trung điểm của AB)

                                             gAOC = gBOE (hai góc đối đỉnh)

=>tgACO=tgEBO(g.c.g)=>AC=BE;OC=OE (hai cạnh tương ứng)

xét tgCOD và tgEOD có:      OC=OE (cmt)

                                             gCOD=gEOD=90độ

                                             OD là cạnh chung 

=>tgCOD=tgEOD (c.g.c)

=> CD= DE (hai cạnh tương ứng)

mà DE=DB+BE =>CD=DB+BE 

mà BE=AC(cmt)=>CD=AC+BD

b, xét tgCOJ và tgEOJ có : OC=OE (cmt)

                                            gCOJ=gEOJ = 90độ

                                            OJ là cạnh chung

=>tgCOJ=tgEOJ (c.g.c)=>gJCO=gJEO;JC=JE

xét tgCDJ và tgEDJ có: CD=DE (cmt)

                                       DJ là cạnh chung

                                      CJ=EJ (cmt)

=>tgCDJ=tgEDJ (c.c.c)

=>gDCJ=gDEJ 

mà gDCJ = gJCO (CJ là tia phân giác của gOCD)

       gJCO=gJEO (cmt)

=>gDEJ = gJEO =>EJ là tia phân giác của gBEO

                                        

Ai bt câu c giúp mk vs

29 tháng 5 2020

ae giúp nó đi chứ

12 tháng 3 2020

x C A O B K y D

Gọi K là giao điểm của CO và BD

Xét \(\Delta\)AOC và \(\Delta\)BOK có :

AO = BO(gt)

\(\widehat{OAC}=\widehat{OBK}\left(=90^0\right)\)

\(\widehat{O}\)chung

=> \(\Delta\)AOC = \(\Delta\)BOK(g.c.g)

=> OC = OK(hai cạnh tương ứng)

     AC = BK(hai cạnh tương ứng)

Xét \(\Delta\)COD và \(\Delta\)KOD có :

CO = KO(gt)

\(\widehat{OCD}=\widehat{OKD}\left(=90^0\right)\)

OD cạnh chung

=> \(\Delta\)COD = \(\Delta\)KOD(c.g.c)

=> CD = KD(hai cạnh tương ứng)

Do đó : CD = DB + BK = DB + AC