Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)
Ta có
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
a) Xét ΔABM và ΔFCM có
AM=FM(gt)
\(\widehat{AMB}=\widehat{FMC}\)(hai góc đối đỉnh)
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔFCM(c-g-c)
b) Xét ΔBMF và ΔCMA có
BM=CM(M là trung điểm của BC)
\(\widehat{BMF}=\widehat{CMA}\)(hai góc đối đỉnh)
FM=AM(gt)
Do đó: ΔBMF=ΔCMA(c-g-c)
nên \(\widehat{FBM}=\widehat{ACM}\)(hai góc tương ứng)
mà \(\widehat{FBM}\) và \(\widehat{ACM}\) là hai góc ở vị trí so le trong
nên BF//AC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: ΔABM=ΔFCM(cmt)
nên \(\widehat{ABM}=\widehat{FCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{FCM}\) là hai góc ở vị trí so le trong
nên AB//CF(Dấu hiệu nhận biết hai đường thẳng song song)
A B C H M D I E 1 1 2
a) Tam giác ABC vuông tại A có: AM là trung tuyến => AM = BC/2
Ta có: MB = MC = BC/2 (M là trung điểm của BC)
MA = MD (gt)
=> MA = MB = MC = MD
=> tam giác MAB cân tại M ; tam giác MCD cân tại M
=> góc B = \(\frac{180^o-AMB}{2}\); góc \(C_1=\frac{180^o-CMD}{2}\)
Mà góc AMB = CMD (đối đỉnh)
=> góc B = góc C1 mà 2 góc này ở vị trí so le trong
=> CD // AB mà AB vuông góc với AC
=> CD vuông góc với AC
b) CD vuông góc với AC mà IE // AC => ID vuông góc với IE => góc EID = 90o
Mà tam giác ACI vuông cân tại C (do CI = CA; góc ACI = 90o)
=> góc CIA = 45o
=> góc AIE = góc EID - CIA = 90o - 45o = 45o
+) Vì AC // EI => góc CAE + AEI = 180o (2 góc trong cùng phía)
hay góc CAI + IAE + AEI = 180o => 45o + IAE + AEI = 180o (1)
+) Tương tự, ID // AB => góc CIA + IAB = 180o (2 góc trong cùng phía)
hay góc CIA + IAD + DAB = 180o => 45o + IAD + DAB = 180o (2)
+) Vì AC // EI => góc AEI = A1 (2 góc đồng vị)
Mà góc A1 + C2 = 90o (do tam giác AHC vuông tại H)
góc B + C2 = 90o (do tam giác ABC vuông tại A)
=> góc A1 = B
=> góc AEI = góc B mà góc B = DAB (do tam giác MAB cân tại M)
=> góc AEI = góc DAB (3)
Từ (1)(2) (3) => góc EAI = IAD
Lại có cạnh chung AI; góc AIE = AID (cùng = 45o)
=> tam giác DAI = EAI (g - c - g)
c) tam giác DAI = EAI => AD = AE mà AD = BC (vì cùng bằng 2 lần MA)
=> AE = BC
Xét ΔABE có
BH la đường cao
BH là đường trung tuyến
Do đó: ΔABE cântại B
=>BA=BE(1)
Xét tứ giác ABFC có
M là trug điểm của AF
M là trung điểm của BC
Do đó: ABFC là hình bình hành
Suy ra: AB=FC(2)
Từ (1) và (2) suy ra BE=CF