K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABE có
BH la đường cao

BH là đường trung tuyến

Do đó: ΔABE cântại B

=>BA=BE(1)

Xét tứ giác ABFC có

M là trug điểm của AF

M là trung điểm của BC

Do đó: ABFC là hình bình hành

Suy ra: AB=FC(2)

Từ (1) và (2) suy ra BE=CF

6 tháng 2 2016

em chưa học chị ui, chị thông cảm nha

6 tháng 2 2016

em cung the

25 tháng 1 2016

hình như bài này sai đề

 

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

22 tháng 2 2018

a, Bạn chứng minh : tam giác ABH=EBH ( hai cạnh góc vuông) => AB=BE

tam giác ABM=CMF ( c.g.c ) => CF=AB 

=> BE=CF=AB

22 tháng 2 2018

b, Chứng minh tam giác AHM=EHM ( hai cạnh góc vuông )

=> AM=EM mà AM=AF nên ME=MF (đpcm)

22 tháng 11 2017

Bạn vẽ hình đi mk làm cho nha

22 tháng 11 2017

kẻ hình ra đi rồi tao giải cho

6 tháng 5 2016

Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)

Ta có 

Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)

      dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)

Vậy , suy ra AE/AD = 1/3

Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)

DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB

DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)

=> AE/AD = 1/3

13 tháng 4 2017

cu lam nhu nguoi hoi nay lam dung 100 phan tram

a) Xét ΔABM và ΔFCM có 

AM=FM(gt)

\(\widehat{AMB}=\widehat{FMC}\)(hai góc đối đỉnh)

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔFCM(c-g-c)

b) Xét ΔBMF và ΔCMA có 

BM=CM(M là trung điểm của BC)

\(\widehat{BMF}=\widehat{CMA}\)(hai góc đối đỉnh)

FM=AM(gt)

Do đó: ΔBMF=ΔCMA(c-g-c)

nên \(\widehat{FBM}=\widehat{ACM}\)(hai góc tương ứng)

mà \(\widehat{FBM}\) và \(\widehat{ACM}\) là hai góc ở vị trí so le trong

nên BF//AC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: ΔABM=ΔFCM(cmt)

nên \(\widehat{ABM}=\widehat{FCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{FCM}\) là hai góc ở vị trí so le trong

nên AB//CF(Dấu hiệu nhận biết hai đường thẳng song song)

27 tháng 5 2015

a = 1v co nghĩa a là góc vuông

27 tháng 5 2015

A B C H M D I E 1 1 2

a) Tam giác ABC vuông tại A có: AM là trung tuyến => AM = BC/2

Ta có: MB = MC = BC/2 (M là trung điểm của BC)

MA = MD (gt)

=> MA = MB = MC = MD

=> tam giác MAB cân tại M ; tam giác MCD cân tại M

=> góc B = \(\frac{180^o-AMB}{2}\); góc \(C_1=\frac{180^o-CMD}{2}\)

Mà góc AMB = CMD (đối đỉnh)

=> góc B = góc C1 mà 2 góc này ở vị trí so le trong

=> CD // AB mà AB vuông góc với AC

=> CD vuông góc với AC

b) CD vuông góc với AC mà IE // AC => ID vuông góc với IE => góc EID = 90o

Mà tam giác ACI vuông cân tại C (do CI = CA; góc ACI = 90o)

=> góc CIA = 45o

=> góc AIE = góc EID - CIA = 90o - 45o = 45o

+) Vì AC // EI => góc CAE + AEI = 180o (2 góc trong cùng phía)

hay góc CAI + IAE + AEI = 180o   => 45+ IAE + AEI = 180o   (1)

+) Tương tự, ID // AB => góc CIA + IAB = 180o (2 góc trong cùng phía)

hay góc CIA + IAD + DAB = 180o =>  45o + IAD + DAB = 180o    (2)

+) Vì AC // EI => góc AEI = A1 (2 góc đồng vị)

Mà góc A1 + C2 = 90o (do tam giác AHC vuông tại H)

góc B + C2 = 90o (do tam giác ABC vuông tại A)

=> góc A1 = B

=> góc AEI = góc B mà góc B = DAB (do tam giác MAB cân tại M)

=> góc AEI = góc DAB (3)

Từ (1)(2) (3)  => góc EAI = IAD 

Lại có cạnh chung AI; góc AIE = AID (cùng = 45o)

=> tam giác DAI = EAI (g - c - g)

c) tam giác DAI = EAI => AD = AE mà AD = BC (vì cùng bằng 2 lần MA)

=> AE = BC