K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

ME TOOgianroikhocroi

23 tháng 1 2022
12 tháng 12 2020

lấy công thức ra 

25 tháng 12 2019
ccccc 
ccccccc 
  
24 tháng 12 2016

Ta có hình vẽ sau:

B A C I M N

a/ Xét ΔABI và ΔACI có:

AI: Cạnh chung

AB = AC (gt)

BI = CI (gt)

=> ΔABI = ΔACI (c.c.c) (đpcm)

=> \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng)

=> AI là tia p/g của \(\widehat{BAC}\) (đpcm)

b/ Vì AB = AC => ΔABC cân => \(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABC}+\widehat{ABM}=180^o\) (kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^o\) (kề bù)

=> \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có:

BM = CN (gt)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

AB = AC (gt)

=> ΔABM = ΔACN (c.g.c)

=> AM = AN(2 cạnh tương ứng) (đpcm)

c/ Vì ΔABI = ΔACI (ý a)

=> \(\widehat{AIB}=\widehat{AIC}\) (2 cạnh tương ứng)

\(\widehat{AIB}+\widehat{AIC}=180^o\) (kề bù)

=> \(\widehat{AIB}=\widehat{AIC}=\frac{180^o}{2}=90^o\)

=> \(AI\perp BC\left(đpcm\right)\)

24 tháng 12 2016

ta có hình vẽ sau:

Hỏi đáp Toán

a) xét \(\Delta ABI\)\(\Delta ACI\) có:

\(AB=AC\left(gt\right)\)

\(I\) là cạnh chung

\(BI=CI\left(gt\right)\)

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\Delta ABI=\Delta ACI\) nên \(\widehat{ABI}=\widehat{ACI}\) (hai góc tương ứng)

\(I\in BC\left(gt\right)\)\(BI=CI\left(gt\right)\) nên \(AI\) là tia phân giác của \(\widehat{BAC}\)

c) \(I\) là trung điểm của \(BC\) (1)

\(\widehat{AIB}+\widehat{AIC}=180^o\) (2)

Từ (1) và (2) \(\Rightarrow AI\perp BC\)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) hay \(\widehat{AIM}=\widehat{AIN}\) ( vì \(N;M\in BC\)\(CN=BM\left(gt\right)\))

\(\Rightarrow IM=IN\) (hai cạnh tương ứng)

b) xét \(\Delta AIM\)\(\Delta AIN\) có:

\(AI\) là cạnh chung

\(\widehat{AIM}=\widehat{AIN}=90^o\) \(\left(cmt\right)\)

\(IM=IN\left(cmt\right)\)

\(\Rightarrow\Delta AIM=\Delta AIN\left(c.g.c\right)\)

\(\Rightarrow AM=AN\) (2 cạnh tương ứng)

 

 

 

 

 

 

 

Hình tự vẽ , giải :

a) Vì \(\Delta ABC\) có \(AB=AC\Rightarrow\Delta ABC\) cân tại A \(\Leftrightarrow\widehat{B}=\widehat{C}\) ( T/c tam giác cân )

Có I nằm trên BC ( vì I là trung điểm BC )  nên có \(\widehat{ABI}=\widehat{ACI}\left(\widehat{B}=\widehat{C}\right)\)

b) Có \(\widehat{B}+\widehat{ABM}=180^0=\widehat{C}+\widehat{ACN}\) ( cặp góc kề bù ). Mà \(\widehat{B}=\widehat{C}\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét \(\Delta ABM\) và \(\Delta ACN\)  : \(BM=CN\left(gt\right)\) ; \(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\) ; \(AB=AC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)\Leftrightarrow AM=AN\) ( 2 cạnh tương ứng )

a) Xét \(\Delta ABI\)và \(\Delta ACI\)có:

        AB = AC (gt)

        AI là cạnh chung

        BI = CI (I là trung điểm của BC)

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\Rightarrow\widehat{ABI}=\widehat{ACI}\)(2 góc tương ứng)

      \(\widehat{BAI}=\widehat{CAI}\)(2 góc tương ứng)

=> AI là tia phân giác của góc BAC

b) Xét \(\Delta ABM\)và \(\Delta ACN\)có:

         AB = AC (gt)

         \(\widehat{ABM}=\widehat{ACN}\)(cm a)

         BM = CN (gt)

\(\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)\)

=> AM = AN (2 cạnh tương ứng)

b) Ta có: \(\Delta ABI=\Delta ACI\)(theo a)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng)

Mà \(\widehat{AIB}+\widehat{AIC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AI\perp BC\)

Vậy AI và BC là hai đường thẳng vuông góc

16 tháng 12 2019

Hình tự vé nha bạn !!!

a)  Xét tam giác vuông ABI và ACI ( ABI = 90 độ và AIC = 90 độ ) có :

AB = AC 

BI = CI ( vì I là trung điểm của BC )

Suy ra Tam giác vuông ABI = Tam giác vuông ACI ( hai cạnh góc vuông )

Suy ra góc BAI = góc CAI ( 2 góc tương ứng ) 

BAI = CAI = \(\frac{BAC}{2}\)

Suy ra AI là tia phân giác góc BAC 

Bạn làm phần a, trước đi nhé !!!

CHÚC BẠN HỌC TỐT !!