Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn (C) tâm I(1;2) bán kính \(R=\sqrt{5}\)
a.
\(\overrightarrow{OI}=\left(1;2\right)\Rightarrow\) đường thẳng OI nhận (2;-1) là 1 vtpt
Phương trình: \(2\left(x-0\right)-1\left(y-0\right)=0\Leftrightarrow2x-y=0\)
b.
Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)
Áp dụng định lý Pitago:
\(IH=\sqrt{IA^2-AH^2}=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{\sqrt{2}}{2}\)
Phương trình \(\Delta\) qua M có dạng:
\(a\left(x-1\right)+b\left(y-3\right)=0\) với \(a^2+b^2>0\)
\(d\left(I;\Delta\right)=\dfrac{\left|a\left(1-1\right)+b\left(2-3\right)\right|}{\sqrt{a^2+b^2}}=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left|\sqrt{2}b\right|=\sqrt{a^2+b^2}\Leftrightarrow2b^2=a^2+b^2\)
\(\Leftrightarrow a^2=b^2\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;1\right)\\\left(a;b\right)=\left(1;-1\right)\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y-3\right)=0\\1\left(x-1\right)-1\left(y-3\right)=0\end{matrix}\right.\)
I thuộc Δ nên I(2-t;3-t)
\(IC=5\)
=>\(\sqrt{\left(6-2+t\right)^2+\left(2-3+t\right)^2}=5\)
=>(t+4)^2+(t-1)^2=25
=>2t^2+6t+17-25=0
=>2t^2+6t-8=0
=>t^2+3t-4=0
=>t=-4 hoặc t=1
=>I(6;7); I(1;2)
=>(x-6)^2+(y-7)^2=25 hoặc (x-1)^2+(y-2)^2=25
\(3.\)
\(-2x^2+3x+2\ge0\)
\(\Leftrightarrow-\left(x-2\right)\left(2x+1\right)\ge0\)
\(\Leftrightarrow\left(2-x\right)\left(2x+1\right)\ge0\)
Giải bất phương trình ra được: \(\frac{-1}{2}\le x\le2\)
Vậy \(x\in\left\{\frac{-1}{2};2\right\}\)
\(5.\)
Đường thẳng đã cho song song với đường thẳng \(2x+y+2020=0\)
<=> Đường thẳng đã cho có véc tơ pháp tuyến là \(n\left(2;1\right)\)
Mà đường thẳng đã cho đi qua \(M\left(3;0\right)\)nên ta có phương trình:
\(2\left(x-3\right)+y=0\)
\(2x+y-6=0\)
a) Ta có: \(\overrightarrow{\text{BC}}\) = (1; -7)
\(\overrightarrow{\text{ }n_{\text{BC}}}\)= (7; 1)
PTTQ: 7(x - 5) + 1(y - 5) = 0
=> 7x - 35 + y - 5 = 0
=> 7x + y - 40 = 0
b) Ta có: \(\overrightarrow{\text{AC}}\) = (8; -6)
=> \(\text{AC}=\sqrt{8^2+6^2}=10\)
Phương trình đường tròn là:
(x + 2)2 + (y - 4)2 = 100
c) (C): (x + 2)2 + (y - 4)2 = 100
Ta có: \(\text{AM}=\sqrt{2^2+5^2}=\sqrt{29}\)
Để HK ngắn nhất => d(A; Δ) lớn nhất
=> d(A; Δ) = AM => AM ⊥ Δ
=> \(\overrightarrow{\text{n}_{\Delta}}\) = \(\overrightarrow{\text{AM}}\)
=> \(\overrightarrow{\text{n}_{\Delta}}\) = (-2; -5)
=> \(\text{2}\left(x+4\right)+5\left(y+1\right)=0\)
=> \(\text{ }2x+5y+13=0\)