K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

a, Xét tgiác ABH và tgiác CBA có

Góc AHB = BAC (=900)

Góc B chung

==> ABH đồng dạng CBA (g-g)

tương tự cminh tgiác ACH đồng dạng BCA(g-g)

vì ABH đồng dạng CBA, ACH đồng dạng BCA ==>ABH đồng dạng CAH (bc)

b, xét tam giác AHB và tam giác HPQ có

góc H chung

HP/HB = HQ/HA (=1/2)

==> tam giác AHB đồng dạng QHP 

==> AH/HQ = HB/HP

==> AH.HP=HB.HQ

C, Sai đề rồi bạn ơi

26 tháng 3 2017

um. phần c đề là tam giác ABC đồng dạng tam giác CAQ

30 tháng 7 2016

Hỏi đáp Toán

30 tháng 7 2016

Bạn tự vẽ hình nha!

a, Xét Tg ABH và CAH có:

  AHB=CHA  (=90)

  BAH=ACH (=90-ABC)

=>  ABH đồng dạng CAH (g.g)

b, Tg ABH đồng dạng CAH (câu a)  => \(\frac{AB}{AC}=\frac{BH}{AH}=\frac{BH:2}{AH:2}=\frac{BP}{AQ}\)

Xét Tg ABP và CAQ có: \(\frac{BP}{AQ}=\frac{AB}{AC}\)

                                        CAH=ABH  (=90-BAH)

=> Tg ABP đồng dạng CAQ (c.g.c)

c, Ta có: PQ là đg trung bình của Tg ABH  => PQ//AB => PQ \(\perp\)AC

Mà AH\(\perp\)PC  => Q là trực tâm của Tg APC

=> AP \(\perp\)CQ

a: Xét ΔABH vuông tại H và ΔCAH vuông tại H có

góc HAB=góc HCA

DO đó: ΔABH đồng dạng với ΔCAH

b: Xét ΔABP và ΔCAQ có

AB/CA=BP/AQ(AB/CA=BH/AH)

góc ABP=góc CAG

Do đó: ΔABP đồng dạng với ΔCAQ

c: Xét ΔHAB có

Q là trung điểm của HA

P là trung điểm củaHB

Do đo: QP là đường trung bình

=>QP//AB

hay QP vuông góc với AC

Xét ΔCAP có

PQ là đường cao

AH là đường cao

PQ cắt AH tại Q

Do đó: Q là trực tâm

=>QC vuông góc với AP

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:

Xét tam giác $ABH$ và $CAH$ có:

$\widehat{AHB}=\widehat{CHA}=90^0$

$\widehat{ABH}=\widehat{CAH}$ (cùng phụ góc $\widehat{BAH}$)

$\Rightarrow \triangle ABH\sim \triangle CAH$ (g.g)

$\Rightarrow \frac{AB}{CA}=\frac{BH}{AH}=\frac{BH:2}{AH:2}=\frac{BP}{AQ}$

Xét tam giác $ABP$ và $CAQ$ có:

$\widehat{ABP}=\widehat{CAQ}$ (cùng phụ $\widehat{BAH}$)

$\frac{AB}{CA}=\frac{BP}{AQ}$ (cmt)

$\Rightarrow \triangle ABP\sim \triangle CAQ$ (c.g.c)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Hình vẽ:

undefined

30 tháng 3 2021

                               Bài giải

a) Xét tam giác ABH và CAH có:

  \(\widehat{AHB}=\widehat{CHA}\left(=90^o\right)\)

\(\widehat{BAH}=\widehat{ACH}\left(=90^o-\widehat{ABC}\right)\)
\(\Rightarrow\Delta ABH\infty\Delta CAH\left(g.g\right)\)

 \(\Delta ABH\infty\Delta CAH\left(g.g\right)\) (câu a)  \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}=\dfrac{BH\text{ : }2}{AH\text{ : 2}}=\dfrac{BP}{AQ}\)

Xét \(\Delta ABP \text{và }\Delta CAQ\) có: BPAQ=ABACBPAQ=ABAC

                                        \(\widehat{CAH}=\widehat{ABH}\left(=90^o-\widehat{BAH}\right)\)

\(\Rightarrow\Delta ABP\infty\Delta CAQ\left(c.g.c\right)\)

b, Ta có: PQ là đg trung bình của\(\Delta ABH\Rightarrow\text{ }PQ\text{ // }AB\text{ }\Rightarrow\text{ }PQ\perp AC\)  

Mà AHPC  => Q là trực tâm của \(\Delta APC\)

\(\Rightarrow\text{ }AP\perp CQ\)

10 tháng 6 2017

bạn tự vẽ hình nhé

a, xét tgABH và tg CAH có

\(\widehat{AHB}=\widehat{CHA}=90\)

\(\widehat{ABH}=\widehat{HAC}\)(cùng phụ với góc BAH)

suy ra chúng đồng dạng theo g.g

b, VÌ tgABH đồng dạng tg CAH

suy ra \(\frac{AB}{AC}=\frac{BH}{AH}=\frac{2BF}{2AE}=\frac{BF}{AE}\)

suy ra AB.AE=AC.BF

15 tháng 5 2020

c) Do MN song song với AB nên MN vuông góc với AC

Tam giác AMC có 2 đường cao AH, MN suy ra N là trực tâm. Do đó CN vuông góc với AM.