Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ADH(vuông tại H) và tam giác ADE(vuông tại E) có :
góc HAD= góc EAD( vì AD là phân giác của góc HAC).
AD chung.
do đó: tam giác ADH= tam giác AED( cạnh huyền. Góc nhọn).
=>HD=DE.
xét tam giác HDK và tam giác EDC có:
góc AHD= góc CED=90 độ.
HD=DE.
góc HDK= góc EDC( 2 góc đối đỉnh)
do đó tam giác HDK = tam giác EDC(g-c-g). => DK=DC=> tam giác DKC cân tại D
a: Xét ΔADH vuông tại H và ΔADE vuông tại E có
AD chung
góc HAD=góc EAD
=>ΔADH=ΔADE
=>Dh=DE
b: Xét ΔDHK vuông tại H và ΔDEC vuông tại E có
DH=DE
góc HDK=góc EDC
=>ΔDHK=ΔDEC
=>DK=DC
c: AH+HK=AK
AE+EC=AC
mà AH=AE và HK=EC
nên AK=AC
=>ΔAKC cân tại A
mà AF là trung tuyến
nên AF là phân giác của góc KAC
=>A,D,F thẳng hàng
e: I là trực tâm của ΔBAD
=>DI vuông góc AB
=>DI//AC
=>góc BDI=góc ACB
DT là phân giác của góc IDB
=>góc TDI=góc TDB=1/2*góc BDI=1/2*góc ACB
DI//AC
=>góc IDA=góc DAC
AD là phân giác của góc HAC
=>góc DAC=1/2*góc HAC
=>góc IDA=1/2*góc HAC
góc HAC+góc ACB=90 độ
=>góc IDT+góc IDA=1/2*90=45 độ
=>góc TDA=45 độ
=>ΔTDA vuông cân
CM:DH=DE
Vì AH là đường cao=>góc AHC=90o
Vì DE vuông góc với AC=>góc AEP=90o
AHC=AEP(=90o)
Xét tam giác ADE và tam giác ADH có:
AHC=AEP(=90o )
AD:cạnh chung
EAD=HAD(AD là phân giác của tam giác AHC)
=>tam giác ADE=tam giác ADH(cạnh huyền-góc nhọn)
=>DE=DH(2 cạnh tương ứng)
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
góc HAD=góc EAD
=>ΔAHD=ΔAED
=>DH=DE
b: Xét ΔAEK vuôngtại E và ΔAHC vuông tại H có
AE=AH
góc EAK chung
=>ΔAEK=ΔAHC
=>AK=AC
=>ΔAKC cân tại A
c: Xét ΔKHE và ΔCEH có
KH=CE
HE chung
KE=CH
=>ΔKHE=ΔCEH
d: CB=8+32=40cm
\(AC=\sqrt{32\cdot40}=\sqrt{1280}=16\sqrt{5}\left(cm\right)\)
1a. Vì AB là đường trung trực của DH nên AD=AH.
vì AC là đường trung trực của HE nên AH=AE.
do đó AD=AE(=AH) => tam giác ADE cân tại A.