Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.áp dụng pi-ta-go ta có : \(AC^2=BC^2-AB^2\Rightarrow AC=\sqrt{100-36}\)\(=8\)
MH là đường trung bình tam giác ABC nên MH=1/2 AB = 3cm
2.Có H là trung điểm MD vì M đối xứng với D qua H
H là trung điểm AC (giả thiết)
tứ giác ANCD có 2 đường chéo giao nhau tại trung điểm mỗi đường nên là hình b hành
3. chưa nghĩ ra
4 tương tự bà trên mk giải rồi bạn tư duy nhé !
3 nè
xét tam giác KHC và tam giác GHA có HC=HA . góc CHK=góc AHG đối đỉnh . góc KCH=góc GAH (so le trong)
nên tam giác KHC = GHA => KC=AG .lại có DC=AM suy ra \(\frac{CK}{CD}=\frac{AG}{AM}\)mà G là trọng tâm tam giác ABC nên AG/AM=2/3
=> CK/CD =2/3 (điều phải cm)
+ Xét tứ giác BHCD có
BD vuông góc AB; CH vuông góc AB => BD//CH (cùng vuôn góc AB) (1)
CD vuông góc AC; BH vuông góc AC => CD//BH (cùng vuông góc AC) (2)
Từ (1) và (2) => BHCD là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)
+ Nối H với D cắt BC tại O'
=> O'B=O'C (t/c đường chéo hình bình hành) mà O là trung điểm BC => O trùng O' => H; O; D thẳng hàng
a, có MD=MA
BM=CM( M là trung điểm)
mà \(MA=\frac{BC}{2}\)(đường trung tuyến ứng với cạnh huyền của tam giác ABC
=> MA=MB=MD=MC hay MA+MD=MC+MD=> AD=BC
=> ABCD là hcn ( tính chất 2 đường chéo bằng nhau
a: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HD
Cho t/giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho CF=BE. Vẽ tia Bx vuông góc AB & Cy vuông góc AC. Gọi I là giao điểm của Bx và Cy
a, C/m t/giác IEF cân
b, Vẽ qua E đường thẳng song song với BC cắt AC tại D. C/m CD=CF
c, Gọi H là Giao điểm của EF và BC. C/m E, F đối xứng qua IH
Câu a ,b mình biết làm rồi còn câu c nữa thôi. SIN LOI MINH KO BIET LAM
a: Xét ΔABC có AE/AB=AK/AC
nên EK//BC
b: Xét tứ giác ABMC có
AB//MC
AC//MB
góc BAC=90 độ
=>ABMC là hình chữ nhật
c: Xét ΔCAB co
K là trung điểm của CA
KO//AB
=>O là trung điểm của BC
ABMC là hình chữ nhật
=>AM cắt BC tại trung điểm của mỗi đường
=>A,O,M thẳng hàng
B A C D x y O
1) Theo bài ra ta có:
BD//AC; AB//CD
=> ABDC là hình bình hành
mà AB=AC
=> ABCD là hình thoi
Ta lại có \(\widehat{A}=90^o\)
=> ABCD là vuông.
b) Hai đường chéo của hình vuông cắt nhau tại trung điểm mỗi đường
Gọi O' là giao điểm của BC và AD
=> O' là trung điểm BC
=> O' trùng điểm O
=> O là trung điểm AD
=> A, O, D thẳng hàng
A C B D x y O
1) Xét tứ giác ABCD có :
\(\hept{\begin{cases}BD//AC\left(Bx//AC\right)\\AB//CD\left(AB//Cy\right)\end{cases}}\)=> ABCD là hình bình hành
=> AB = CD
2) Vì ABCD là hình bình hành
=> AD và BC cắt nhau tại trung điểm của mỗi đường ( Tính Chất )
Mà O là trung điểm của BC
=> O là trung điểm của AD
=> O , A , D thẳng hàng ( Đpcm )