K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2023

a/ 

MA=MC (gt); MB=MQ (gt) => ABCQ là hbh (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)

=> AQ=BC (cạnh đối hbh) (1)

\(\widehat{ABC}=\widehat{AQC}\) (góc đối hbh) (2)

Ta có BL=BC (cạnh hình vuông) (3)

Ta có

\(\widehat{DBL}+\widehat{ABC}=360^o-\widehat{ABD}-\widehat{LBC}=360^o-90^o-90^o=180^o\left(4\right)\)

\(\widehat{BAQ}+\widehat{AQC}=180^o\) (5)

Xét \(\Delta BDL\) và \(\Delta ABQ\) có

BD=AB (cạnh hình vuông)

Từ (1) và (3) => BL=AQ

Từ (2) (4) (5) => \(\widehat{DBL}=\widehat{BAQ}\)

\(\Rightarrow\Delta BDL=\Delta ABQ\) (c.g.c) => DL=BQ

Câu b xem lại đề bài

15 tháng 8 2016

N B A C G D E K L M

Trên tia đối của tia MB lấy điểm G sao cho BM = MG . Gọi N là trung điểm DL

Dễ dàng chứng minh được BCGA là hình bình hành => AB = CG = BD ; 

Ta có : Góc DBL + góc ABC = 360 độ - 90 độ - 90 độ = 180 độ

mà BCGA là hình bình hành => AB // CG => góc ABC + góc GCB = 180 độ

=> góc DBL = góc BCG

Xét tam giác DBL và tam giác BCG có BC = BL (BCKL là hình vuông)

góc DBL = góc BCG (cmt) ; CG = DB

=> tam giác DBL = tam giác BCG (c.g.c)

=> BG = DL => DL = 2BM

a) Ta có: gócDAB+gócBAC=gócDAC
               gócEAC+gócBAC=gócBAE
       MÀ gócDAB=gócEAC(=90độ)
=> gócDAC=gócBAE
xét tam giác DAC và tam giác BAE có:
AD=AB(GT)
AE=AC(GT)
gócDAC=gócBAE(cmt)
=>tam giác DAC =tam giác BAE(c.g.c) 
gọi giao điểm của AB và CD là F
      giao điểm của BE VÀ CD là I
Xét tam giác afd vuông tại A
=>gócADF+gócDFA=90độ
   mà gócADF= gócABI ( tam giác DAC =tam giác BAE  )
gócDFA=gócBFI
=> gócABI+gócBFI=90độ
=>gócFIB=90độ
=>CD vuông góc BE

b)từ a 
có KH,BE,CD là 3 đường cao của tam giácKBC nên chúng đồng quy tại I

a) Kẻ DM, EN vuông góc BC.

Xét :

_ AC = CE

 (góc có cạnh tương ứng vuông góc)

Nên chúng bằng nhau, suy ra: 

Tương tự: 

Do  (P là giao của CK và BE, quên vẽ) nên CNEP là tứ giác ntiếp 

Do đó 2 tam giác vuông 

Từ đó: 

2 tg này có 2 cặp cạnh tg ứng vuông góc là MD, BH và MC, KH nên cặp còn lại 

b) Từ a ta có KH, BE, CD là 3 đường cao , nên chúng đòng quy tại I.