Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E M N
( GT, KL bạn tự viết nha )
Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath
A B C D E J I M N
a) Ta có góc DAC=60o+góc BAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
DA=BA
góc DAC=góc BAC
AC=AE
Nên tam giác ADC= tam giác ABE (c.g.c)
b) J thuộc DC sao cho DJ=BI
Xét tam giác ADJ và tam giác ABI có:
AD=AB
góc ADJ=góc ABI (vì tam giác ADC= tam giác ABE)
DJ=BI
Nên tam giác ADJ= tam giác ABI (c.g.c)
Suy ra AJ=AI (2 cạnh tương ứng)
Mà góc JAI= góc JAB+ góc BAI = góc JAB+ góc DAJ=60o
Nên tam giác AIJ đều nên góc =60o
Lại có tam giác ADJ= tam giác ABI:
Nên góc AIB=góc AJD=180o - góc AJI=120o
=> góc BID = góc AIB- góc AID =60o
c, Théo câu a ta có BE=CD do đó DM=BN
Lại có tam giác DAC = tam giác BAE nên góc ABN= góc ADM
Xét tam giác ABN và tam giác ADM có:
AB=AD
góc ABN= góc ADM
BN=DM
=> tam giác ABN = tam giác ADM => AN=AM; góc DAM= góc BAN
=> góc DAM - góc BAM = góc BAN- góc BAM = AM=AN; góc MAN= góc DAB =60o
=> tam giác AMN là tam giác đều
d, Ta có:
góc AIE= 180o - góc AIB =180o - góc AID - góc BID =1800-600-600
= 60^o = AID
=> đpcm
\(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=60^o+\widehat{BAC}\)
\(\widehat{BAE}=60^o+\widehat{BAC}\)
=> \(\widehat{DAC}=\widehat{BAE}\)
=> t/g DAC = t/g BAE (c.g.c)
=> \(\widehat{DCA}=\widehat{AEB}\) ; DC = BE
=> NC = ME
=> t/g ACN = t/g AEM (c.g.c)
=> \(\widehat{CAN}=\widehat{EAM}\) ; AN = AM (1)
=> \(\widehat{CAN}+\widehat{CAM}=\widehat{EAM}+\widehat{CAM}\)
=> \(\widehat{MAN}=\widehat{EAB}=60^o\) (2)
Từ (1( ; (2)
=> t/g AMN đều
Cho tam giác ABC, vẽ các tam giác đều ABD và ACE ra phía ngoài tam giác ABC. Nối BE và CD.
A, Chứng minh: BE=CD
B, Gọi M,N lần lượt là trung điểm của BE và CD
Chứng minh: tam giác AMN đều
Toán lớp 7