Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
a: Xét tứ giác BDCE có
BD//CE
BE//CD
DO đó: BDCE là hình bình hành
b: Ta có: BDCE là hình bình hành
nen Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của ED
ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BC^2=10^2-6^2=64\)
=>\(BC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{10}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}\)
mà BD+CD=BC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{BD+CD}{3+5}=\dfrac{8}{8}=1\)
=>\(BD=3\cdot1=3\left(cm\right);CD=5\cdot1=5\left(cm\right)\)
DE//AC
Theo định lí Ta-lét, ta có:AE/AB=CD/CB(1)
DF//AB
Theo định lí Ta-lét, ta có:AF/AC=BD/BC(2)
Cong ca 2 ve tuong ung (1) va (2) ta duoc:
AE/AB + AF/AC = CD/CB + BD/BC = CD+BD/BC = BC/BC = 1