Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC và tam giác CDA
có AC chung
AB = CD
BC =DA
=> Tam giác ABC = tam giác CDA (c-c-c)
=> gócCAB = góc DCA ( góc tương ứng)
mà 2 góc này là 2 góc SLT
=> AB//CD.
+ góc ACB =góc CAD( góc tương ứng)
Mà 2 góc này là 2 góc SLT
=> AD//BC
Mà AH vuông góc với BC => AH vuông góc với AD
xét tam giác ABC và tam giác CDA có AB=CD;BC=AD;AD chung
=>tam giác ABC=tam giác CDA
=>góc ACB=góc DAC(2 góc tương ứng)
mà 2 góc này có vị trí so le trong nên AB//CD
mà AH vuông góc BC nên AH vuông góc CD
Xét tam giác ABC và tam giác CDA có AB = CD; BC = AD; AC chung
\(\Rightarrow\) tam giác ABC = tam giác CDA (c.c.c)
\(\Rightarrow\) góc ACB = góc DAC (2 góc tương ứng)
mà 2 góc này có vị trí so le trong nên AB // CD
mà AH | BC nên AH | CD
A B C D H
a) Xét tam giác BAC và tam giác DAC:
AB = CD (gt)
AD = BC (gt)
AC chung
=> tam giác BAC = tam giác DAC (c.c.c) => góc BAC = góc ACD mà 2 óc này ở vị trí so le trong nên suy ra AB // CD (đpcm).
b) Ta có: tam giác BAC = tam giác DAC (chứng minh trên) => góc DAC = góc ACB mà 2 góc này ở vị trí so le trong nên suy ra AD // BC.
Ta lại có: AH vuông góc với BC (gt)
AD // BC (chứng minh trên)
=> AH vuông góc với AD (đpcm).
A B H C D
Giải:
a) Xét \(\Delta BAC,\Delta DCA\) có:
\(AD=BC\left(gt\right)\)
\(CD=AB\left(gt\right)\)
AC: cạnh chung
\(\Rightarrow\Delta BAC=\Delta DAC\left(c-c-c\right)\)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\) ( góc t/ứng )
mà 2 góc trên ở vị trí so le trong nên AB // CD và AD // BC
b) Vì \(AH\perp BC\) và AD // BC nên \(AH\perp AD\)
Vậy...
Xét tam giác ABC và tam giác CDA có AB = CD; BC = AD; AC chung
⇒ tam giác ABC = tam giác CDA (c.c.c)
⇒ góc ACB = góc DAC (2 góc tương ứng)
mà 2 góc này có vị trí so le trong nên AB // CD
mà AH | BC nên AH | CD
P/s: Mk ko chắc đâu.
~ Hok tốt ~
D C A H B
a) Xét \(\Delta ABH\)có:
\(\widehat{BAH}+\widehat{ABH}+\widehat{AHB}=180^o\)( đl tổng 3 góc của 1 tam giác)
hay \(\widehat{BAH}+60^o+90^o=180^o\)
\(\Rightarrow\widehat{BAH}=30^o\)
b) Xét \(\Delta ABC\)và \(\Delta CDA\)có:
\(AB=CD\left(gt\right)\)
\(\widehat{BAC}=\widehat{ACD}\)( 2 góc slt)
\(AC\)cạnh chung
\(\Rightarrow\Delta ABC=\Delta CDA\left(c-g-c\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{CAD}\)( 2 góc tương ứng)
c) Ta có: \(\widehat{ACB}=\widehat{CAD}\)( c/mt)
Mà 2 góc này nằm ở vị trí slt
\(\Rightarrow AD//BC\)
\(\Rightarrow\widehat{AHB}=\widehat{HAD}\)(2 góc slt)
Mà \(\widehat{AHB}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{HAD}=90^o\)
Hay nói cách AD vuông góc AH( đpcm)
học tốt!!
a) Vì \(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)\(\Rightarrow\widehat{BAH}=90^o-\widehat{ABC}=90^o-60^o=30^o\)
b) Do \(AB//CD\Rightarrow\widehat{BAC}=\widehat{ACD}\)(2 góc so le trong)
\(\Rightarrow\Delta ABC=\Delta CDA\left(cgc\right)\)vì\(\hept{\begin{cases}AB=CD\\\widehat{BAC}=\widehat{ACD}\\ACchung\end{cases}}\)
c) Vì \(\Delta ABC=\Delta CDA\Rightarrow\widehat{ACB}=\widehat{CAD}\)(2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong của 2 đường thẳng AD và BC\(\Rightarrow AD//BC\)
Ta có \(AD//BC,AH\perp BC\Rightarrow AD\perp AH\)