Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Tam giác ABC dồng dạng tam giác DEF ( gt )
=> ^B = ^E
\(\Rightarrow\dfrac{BC}{EF}=\dfrac{AB}{AC}=k\)
\(\Rightarrow\dfrac{BM}{EN}=\dfrac{BC:2}{EF:2}=\dfrac{BC}{EF}=\dfrac{AB}{DE}=k\)
Xét tam giác ABM và tam giác DEN, có:
^ B = ^E ( cmt )
\(\dfrac{BM}{EN}=\dfrac{AB}{DE}\)
Vậy tam giác ABM đồng dạng tam giác DEN ( c.g.c )
Xét tam giác ACM và tam giác DFN, có:
^C = ^F ( tam giác ABC đồng dạng tam giác DEF )
\(\dfrac{CM}{FN}=\dfrac{AC}{DF}=k\) ( cmt )
Vậy tam giác ACM đồng dạng tam giác DFN ( c.g.c )
\(\Rightarrow\dfrac{AC}{DF}=\dfrac{AM}{DN}\)
Phải đặt k là tỉ số đồng dạng chứ
Có cách khác nè
Do M, N lần lươt là TĐ của BC và EF
\(\Rightarrow MB=MC=\dfrac{1}{2}BC;EN=FN=\dfrac{1}{2}EF\)
Vì △ABC ~ △DEF
\(\Rightarrow\dfrac{BC}{EF}=\dfrac{AB}{DE}\left(2\right)\)
Xét \(\dfrac{MB}{EN}=\dfrac{\dfrac{1}{2}BC}{\dfrac{1}{2}EF}=\dfrac{BC}{EF}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow...\)
a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có
AB/DE=AC/DF
Do đó: ΔABC\(\sim\)ΔDEF
b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)
Bạn tự chứng minh được DE =1/2 AC ,EF =1/2 AB và DF =1/2 BC
Do đó: Tam giác ABC đồng dạng với tam giác DEF (c.c.c)
b, Tam giác DEF đồng dạng với tam giác ABC theo tỉ số 2 cạnh tương ứng là DE/AC =2 (hoặc EF/AB,DF/BC thì cũng ra 2)
Chúc bạn học tốt.
Tự vẽ hình~
Xét tam giác ABC và tam giác DFE
\(\frac{AB}{EF}=\frac{6}{12}=\frac{1}{2}\)
\(\frac{AC}{FE}=\frac{9}{18}=\frac{1}{2}\)
\(\frac{BC}{DE}=\frac{12}{24}=\frac{1}{2}\)
\(\Rightarrow\frac{AB}{DF}=\frac{AC}{FE}=\frac{BC}{DE}=\frac{1}{2}\)
=>Tam giác ABC đồng đang với tam giác DFE (c.c.c)