Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D E
a)
Xét tam giác AMB có: MD là pg góc AMB
=> \(\frac{AD}{BD}=\frac{AM}{BM}\) ( 1 )
Xét tam giác AMC có: MD là pg góc AMC
=> \(\frac{AE}{CE}=\frac{AM}{CM}\)
Mà BM = CM
=> \(\frac{AE}{CE}=\frac{AM}{BM}\) ( 2 )
* Từ ( 1 ) , ( 2 ) => \(\frac{AD}{BD}=\frac{AE}{CE}\)
=> DE // BC. ( định lí Ta-lét đảo )
Vậy DE // BC.
b)
Ta có: BM = CM = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)x 6 = 3 (cm)
Ta có: \(\frac{AD}{BD}=\frac{AM}{BM}\)
=> \(\frac{AD}{AM}=\frac{BD}{BM}=\frac{AD+BD}{AM+BM}=\frac{AB}{AM+BM}\)
=> \(\frac{AD}{5}=\frac{AB}{5+3}=\frac{AB}{8}\)
=> \(\frac{AD}{AB}=\frac{5}{8}\)
Xét tam giác ABC có: DE // BC
=> \(\frac{DE}{BC}=\frac{AD}{AB}\) ( hệ quả định lí Ta-lét )
=> \(\frac{DE}{6}=\frac{5}{8}\)
=> DE = 3,75 ( cm ).
Vậy DE = 3,75 cm.
A B C E F M
Vì ME là phân giác của \(\widehat{AMB}\) nên \(\frac{EA}{EB}=\frac{MA}{MB}\)
MF là phân giác của \(\widehat{AMC}\) nên \(\frac{FA}{FB}=\frac{MA}{MC}\)
Mà \(MB=MC\) nên \(\frac{EA}{EB}=\frac{FA}{FC}\). Theo định lí Ta - lét đảo \(\Rightarrow EF\)// \(BC\)
\(\Rightarrow\widehat{FEM}=\widehat{EMB}\)
\(\widehat{EFM}=\widehat{FMC}\)
Mà \(\widehat{FEM}=\widehat{EFM}\) ( Do \(\Delta MEF\) cân tại M )
\(\Rightarrow\widehat{EMB}=\widehat{FMC}\Rightarrow\frac{\widehat{AMB}}{2}=\frac{\widehat{AMC}}{2}\Rightarrow\widehat{AMB}=\widehat{AMC}=90\)
=> AM vuông góc với BC hay AM là đường cao .lại có AM là trung tuyến nên tam giác ABC cân tại A
A B C M E F
Bài làm:
a) Ta có: \(\widehat{EMF}=\widehat{EMA}+\widehat{FMA}\)
\(=\frac{1}{2}\widehat{AMB}+\frac{1}{2}\widehat{AMC}\)
\(=\frac{1}{2}\left(\widehat{AMB}+\widehat{AMC}\right)=\frac{1}{2}.180^0=90^0\)
b) Vì ME là phân giác của tam giác AMB => \(\frac{AE}{EB}=\frac{AM}{MB}=\frac{AM}{MC}\)
Vì MF là phân giác của tam giác AMC => \(\frac{FA}{FC}=\frac{AM}{MC}=\frac{AM}{MB}\)
=> \(\frac{AE}{EB}=\frac{FA}{FC}\) => EF // AB
c) BC = 20cm => BM = 10cm
Ta có: \(\frac{AE}{EB}=\frac{AM}{MB}=\frac{10}{10}=1\Rightarrow AE=EB\Rightarrow AE=\frac{1}{2}AB\)
\(\Rightarrow\frac{AE}{AB}=\frac{1}{2}\)
Mà EF // BC => \(\frac{FE}{BC}=\frac{AE}{AB}=\frac{1}{2}\Rightarrow EF=\frac{1}{2}.BC=\frac{1}{2}.20=10\left(cm\right)\)
Vậy EF = 10(cm)