Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cosA\)
\(\Leftrightarrow BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot cosA\)
b:
Kẻ đường cao BH \(\Rightarrow AH=AB.cosA\)
Theo Pitago: \(AB^2=AH^2+BH^2\)
Và: \(BC^2=BH^2+CH^2=BH^2+\left(AC-AH\right)^2\)
\(=BH^2+AC^2-2AC.AH+AH^2\)
\(=AB^2+AC^2-2AC.AH\)
\(=AB^2+AC^2-2AC.AB.cosA\)
a) ta có : \(AB^2+AC^2=2AH^2+BH^2+CH^2\)
\(=2AM^2-2HM^2+\left(BM-HM\right)^2+\left(CM+HM\right)^2\)
\(=2AM^2-2HM^2+BM^2-2BM.HM+HM^2+CM^2+2CM.HM+HM^2\)
\(=2AM^2+BC^2-2BM.CM=2AM^2+BC^2-\dfrac{2BC^2}{4}\)
\(=2AM^2+\dfrac{BC^2}{2}\left(đpcm\right)\)
b) ta có : \(AC^2-AB^2=AH^2+HC^2-BH^2-AH^2\)
\(=HC^2-BH^2=\left(CM+HM\right)^2-\left(BM-HM\right)^2\)
\(=CM^2+2CM.HM+HM^2-BM^2+2BM.HM-HM^2\)
\(=2HM\left(CM+BM\right)=2HM.BC\left(đpcm\right)\)
" Trong 1 tam giác vuông, có 1 góc bằng 30 độ thì cạnh góc vuông đối diện với góc 30độ bằng nửa cạnh huyền " - phần chứng minh xin nhường lại cho bạn, gợi ý là vẽ thếm trung tuyến ứng với cạnh huyền để chứng minh
Kẻ BH ⊥ AC tại H.
Xét tam giác ABH có góc BHA = 90độ (cách kẻ)
=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độ
Xét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ
=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1)
Áp dụng định lý Py-ta-go ta có:
AB² = BH² + AH²
=> BH² = AB² - AH² (2)
Xét tam giác BHC có góc BHC = 90độ (cách kẻ)
=> Áp dụng định lý Py-ta-go ta có:
BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3)
Thay (1) và (2) vào (3) ta có:
BC² = (AB² - AH²) + AC² - AB.AC + AH²
<=> BC² = AB² - AH² + AC² - AB.AC + AH
<=> BC² = AB² + AC² - AB.AC