Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
B C A D E N M
a/ Xét tam giác ABC và tam giác AED có:
BA = AE (GT)
góc BAC = góc DAE (đối đỉnh)
CA = AD (GT)
=> tam giác ABC = tam giác AED (c.g.c)
b/ Ta có: tam giác ABC = tam giác AED (câu a)
=> góc DEA = góc ABC (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> BC // DE (đpcm)
c/ Ta có: BC // DE (đã chứng minh trên)
=> góc DNA = góc AMC so le trong
=> đường MN qua A
hay NA trùng AM
hay N,A,M thẳng hàng
Câu a) Áp dụng định lí Pytago với tam giác ABC vuông tại A ( góc A=90).
Câu b) Chứng minh được tam giác BAC=TAM GIÁC DAC( trường hợp cạnh góc cạnh).
=>BC=DC(2 cạnh tương ứng)>
=>tam giác BDC cân tại C(định nghĩa). (1)
góc BAC=90độ(giả thiết)=> AC vuông góc BD=> AC là đường cao (định nghĩa). (2)
Từ (1) và (2)=> Ac là phân giác của góc BCD (định lí)=> góc BCA=góc DCA (định nghĩa).
chứng minh được: tam giác BEC= tam giác DEC (cạnh góc cạnh).
Câu c) Xét tam giác BDC cân (cmt) có: AC là đường cao (AC vuông góc với BD).
=> AC là đường trung tuyến (định lí) (3) Có: CE/CE=6-2/6=2/3. (4)
Từ (3) và (4)=> E là trọng tâm tam giác BDC. => DE là đường trung tuyến của tam giác BDC.
Vậy DE đi qua trung điểm cạnh BC.