Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AH là tia phân giác của ∠BAC(H∈BC)
=> ∠BAH=∠CAH=1/2∠BAC=60 độ
Ta có:
∠BAC+∠DAC=180 độ
=> ∠DAC=180-120=60 độ
=> ∠DAC=∠HAC=∠HAB=∠EAB(do EAB và DAC là 2 góc đối đỉnh)
Xét ΔDAC và ΔHAC có
AC chung
∠ACD=∠HCA
∠DAC=∠HAC
=> ΔDAC = ΔHAC(g-c-g)
=> AD=AH
Chứng minh tương tự: AE=AH
=> AE=AD(đpcm)
xét tam giác EAB và tam giác DAC có :
AB=AC ( tam giác ABC cân tại A )
góc EAB = góc DAC (đối đỉnh )
EA=AD (cmt)
-> tam giác EAB=tam giác DAC ( c.g.c)
-> góc EBA = góc DCA ( cặp góc tương ứng )
-> ED=DC ( cặp cạnh tương ứng )
*) tam giác ABC cân tại A -> góc B = góc C
mà góc EBA=góc DCA -> góc EBC= góc DCB
-> tan giác IBC cân tại I -> IB=IC
**) IB=IC ( cmt )
mà EB=DC
-> ID=IE
tam giác AED có AE=AD
-> tam giác AED cân tại A -> góc AED = góc EDA (1)
góc B = góc C (cmt) (2)
góc EAD = góc BAC ( đối đỉnh ) (3)
từ (1), (2), (3) -> góc AED = góc ACB
mà 2 góc ở vị trí so le trong -> ED//BC
ED cắt IA tại H
xét tam giác IEA và tam giác IDA (cm tương tự ) 2 tam giác = nhau theo trường hợp cạnh góc cạnh
-> I,H,A thẳng hàng (4)
vì ED//BC .
M là trung điểm của BC -> M cũng là trung điểm của ED
-> H , A , M thằng hàng (5)
từ (4) và (5) -> I ,A,M thẳng hàng
a: Xét ΔABC và ΔAED có
AB=AE
\(\widehat{BAC}=\widehat{EAD}\)
AC=AD
Do đó: ΔABC=ΔAED
ΔABC và ΔADE có:
AB = AD (gt)
AC = AE (gt)
∠BAC = ∠DAE (hai góc đối đỉnh)
⇒ ΔABC = ΔADE (c.g.c)
⇒ ∠C = ∠E ⇒ DE // BC.
a)\(\Delta AED,\Delta ACB\)có AE = AC (gt) ;\(\widehat{EAD}=\widehat{CAB}\)(đối đỉnh) ; AD = AB (gt)
\(\Rightarrow\Delta AED=\Delta ACB\left(c.g.c\right)\Rightarrow\widehat{D}=\widehat{B}\)(2 góc tương ứng ở vị trí so le trong) => ED // BC
b) \(\Delta MAD,\Delta NAB\)có\(\widehat{MAD}=\widehat{NAB}\)(đối đỉnh) ; AD = AB (gt) ;\(\widehat{D}=\widehat{B}\) (cmt)
\(\Rightarrow\Delta MAD=\Delta NAB\left(g.c.g\right)\Rightarrow AM=AN\)(2 cạnh tương ứng)
ΔAEM và ΔACN có:
∠C = ∠E ( hai góc so le trong, DE// BC)
AE = AC ( giả thiết)
∠EAM = ∠CAN (hai góc đối đỉnh)
⇒ ΔAEM = ΔACN (g.c.g) ⇒ AM = AN ( hai cạnh tương ứng).