Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g AME và t/g DMB có:
AM=DM (gt)
AME=DMB ( đối đỉnh)
ME=MB (gt)
Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)
b) t/g AME = t/g DMB (câu a)
=> AE=BD (2 cạnh tương ứng) (1)
AEM=DBM (2 góc tương ứng)
Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)
(1) và (2) là đpcm
c) Xét t/g AKE và t/g CKD có:
AEK=CDK (so le trong)
AE=CD ( cùng = BD)
EAK=DCK (so le trong)
Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)
d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)
=> AF = DC (2 cạnh tương ứng)
AFM=DCM (2 góc tương ứng)
Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC
Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)
Mà AF=DC=BD=AE (4)
Từ (3) và (4) => A là trung điểm của EF (đpcm)
bn tự vẽ hình nha
a) vì tam giác ABC cân tại A
=> Góc ABC=(180-BAC)/2 (1)
vì AE=AD=> tam giác ADE cân tại A
=> góc ADE=(180-EAD)/2 (2)
mà góc BAC= góc EAD (3)
từ (1),(2) và (3) => góc ABC= góc EDA
mà 2 góc ở vị trí so le trong
=> DE song song với BC
B) xét tam giác BAE và tam giác CAD có
AE=AD ( gt)
góc BAE =góc CAD
AB = AC
=> tam giác BAE = tam giác CAD
=> BE = CD ( 2 cạnh tương ứng)
c)bn tự làm nha... nếu ko bt cứ hỏi ... mk đánh mỏi tay qué
a) Xét tam giác AMB và DMC có góc AMB= gCMD,AM=MD,BM=MC=> Tg AMB=TgDMC(cgc)
b) Tam giác ABE có BH là đường cao ( BHvg với AE) và là đường trung tuyến( EH=HA)=> ABE là tg cân taij B
a) Ta có ^A + ^B= 90° (ΔABC vuông tại C)
^A + 2^A= 90°
3^A = 90°
^A = 30°
^B= 90° - 30°= 60°
b)Xét ΔACB và ΔACD có
AC là cạnh chung
^ACB= ^ACD (=90°)
CD= CB (gt)
Vậy ΔACB = ΔACD
=> AD= AB
Xét ΔANC và ΔAMC có
AN= AM (gt)
^NAC=^MAC ( ΔACB = ΔACD )
AC là cạnh chung
Vậy ΔANC = ΔAMC
=> CN= CM
c) Xét ΔNCI và ΔMCI có
CN=CM (cmt)
^NCI=^MCI ( ΔANC = ΔAMC)
CI là cạnh chung
Vậy ΔNCI = ΔMCI
=> IN= IM
a/ Xét \(\Delta ABC\) và \(\Delta ADE\) có:
\(AB=AD\left(gt\right)\\ AE=AC\left(gt\right)\)
\(\widehat{EAD}=\widehat{BAC}\) (đối đỉnh )
Vậy \(\Delta ABC=\Delta ADE\left(cgc\right)\)
b/
Xét \(\Delta ABE\) và \(\Delta ADC\) có:
\(AB=AD\left(gt\right)\\ AE=AC\left(gt\right)\)
\(\widehat{EAB}=\widehat{DAC}\) (đối đỉnh )
Vậy \(\Delta ABE=\Delta ADC\left(cgc\right)\)
\(\Rightarrow\widehat{AEB}=\widehat{ACD}\) (góc tương ứng )
mà chúng nằm ở vị trí sole trong
\(\Rightarrow BE//CD\)
c/ Ta có:
\(ME=\dfrac{BE}{2}\) (M trung điểm BE )
\(NC=\dfrac{CD}{2}\) (N trung điểm CD )
mà BE=DC (\(\Delta ABE=\Delta ADC\) )
\(\Rightarrow ME=NC\)
Xét \(\Delta AEM\) và \(\Delta ACN\) có:
\(AE=AC\left(gt\right)\\ ME=NC\left(cmt\right)\\ \widehat{AEM}=\widehat{ACN}\left(cmt\right)\)
Vậy \(\Delta AEM=\Delta ACN\left(cgc\right)\)
\(\Rightarrow AM=AN\) (cạnh tương ứng )
Mình nghĩ sao làm vậy thôi bạn nhé, mình không chắc đây là cách nhanh nhất, chúc bạn học tốt