K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3
  • Chứng minh ∆ADE = ∆ABC:
    Dùng tiêu chí Cạnh-Góc-Cạnh vì:
    • \(A B = A D\) (A là trung điểm của BD).
    • \(A C = A E\) (A là trung điểm của CE).
    • \(\angle B A C = \angle D A E\) (góc đối đỉnh).
  • Chứng minh DE // BC:
    \(\Delta A D E = \Delta A B C\) (theo C-G-C), nên:
    \(\angle A D E = \angle A B C\)\(\angle D E A = \angle A C B\).
    DE // BC theo định lý góc đồng vị.
  • Chứng minh M, A, N thẳng hàng:
    M, N lần lượt là trung điểm của DE và BC nên AM là đường trung bình của tam giác lớn. Đường trung bình đi qua trung điểm nối song song với cạnh còn lại nên M, A, N thẳng hàng.

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB