Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có :∠EAC=90o (gt)
∠BAD=90o(gt)
=>∠EAC+∠BAC=∠BAD+∠BAC
=>∠EAB=∠DAC
Xét △ADC và △ABC,có:
AD=AB(gt)
∠CAB=∠EAB(cmt)
AE=AC(gt)
=>△ADC=△ABE(c.g.c)
=>BE=DC(t/ư)
Giải
Bạn cân hình cho vuông góc nha! Mình không cân được.
N A B M C E D
Hai tia AE và AC cùng thuộc nửa mặt phẳng có bờ là đường thẳng AB và \(\widehat{BAC}< \widehat{BAE}=90^o\)nên tia AC nằm giữa hai tia AB và AE .
Do đó :
\(\widehat{BAC}+\widehat{CAE}=\widehat{BAE}\)hay
\(\widehat{BAC}=90^o-\widehat{CAE}\left(1\right)\)
Tương tự ta cũng có :
\(\widehat{EAD}-90^o-\widehat{CAE}\left(2\right)\)
Từ (1) và (2) suy ra :
\(\widehat{BAC}=\widehat{EAD}\left(3\right)\)
Xét 2 tam giác ABC và EAD,chúng có :
\(AB=AE\left(gt\right),\widehat{BAC}=\widehat{EAD}\left(theo\left(3\right)\right),AC=AD\left(gt\right)\)
Vậy \(\Delta ABC=\Delta AED\left(c.g.c\right)\)
b) Do 2 tam giác ABC và AED = nhau ta có :
\(BC=ED\&\widehat{C}=\widehat{D}\left(4\right)\)
Ta lại có \(CM=\frac{1}{2}BC;DN=\frac{1}{2}ED\)Vì M và N là trung điểm của BC và AD .
=> CM = AN
Hai tam giác AMC = AND có :
AC = AD (gt) \(\widehat{C}=\widehat{D}\left(theo\left(4\right)\right),CM=DN\left(theo\left(5\right)\right)\)
Vậy \(\Delta AMC=\Delta AND\left(c.g.c\right)\)