Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E 4cm
a) Xét \(\Delta AED\)và \(\Delta ABD\)có chung đường cao hạ từ D xuống cạnh đáy AB
Mà \(AE=\frac{2}{3}AB\Rightarrow S_{\Delta AED}=\frac{2}{3}S_{\Delta ABD}\)
\(\Rightarrow S_{\Delta ABD}=\frac{3}{2}S_{\Delta AED}=\frac{3}{2}\times4=6\left(cm^2\right)\)
Xét \(\Delta ABD\)và \(\Delta ABC\)có chung đường cao hạ từ B xuống cạnh đáy AC
Mà \(AD=\frac{1}{3}AC\Rightarrow S_{\Delta ABD}=\frac{1}{3}S_{\Delta ABC}\)
\(\Rightarrow S_{\Delta ABC}=3S_{\Delta ABD}=3\times6=18\left(cm^2\right)\)
Vậy ...
Xét tam giác AMN và tam giác ABC có
\(\hept{\begin{cases}\frac{AM}{MB}=\frac{AN}{AC}=\frac{1}{3}\\\widehat{A}\text{ chung}\end{cases}}\Rightarrow\frac{S_{AMN}}{S_{ABC}}=\frac{1}{3}.\frac{1}{3}=\frac{1}{9}\)
=> SAMN = \(\frac{1}{9}.432=48cm^2\)
Nối MI ; Xét tam giác BMI và tam giác BAC có
\(\hept{\begin{cases}\frac{BM}{AB}=\frac{BI}{BC}=\frac{2}{3}\\\widehat{B}\text{ chung}\end{cases}}\Leftrightarrow\frac{S_{BMI}}{S_{ABC}}=\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\Leftrightarrow S_{BMI}=432\times\frac{4}{9}=192\) cm2
Khi đó MINC hình bình hành
và SMINC = SABC - SMBI - SMAN = 432 - 192 - 48 = 192 cm2
mà SMINC = 2.SMNI => SMNI = 96 cm2
=> SMNBI = SMNI + SMBI = 96 + 48 = 144 cm2
A B C M N
a)
- Ta thấy : Đáy BM = \(\frac{1}{2}\)MC => Đáy BM = \(\frac{1}{3}\)Đáy BC .
=> SAMC = SABC . \(\frac{1}{3}\)= 36 . \(\frac{1}{3}\)= 12 ( m2 )
- Ta thấy : Cạnh CN = \(\frac{1}{3}\)Cạnh NA => Cạnh CN = \(\frac{1}{4}\)CA
=> SMNC = 12 . \(\frac{1}{4}\)= 3 ( m2 )
- SABMN = SABC - SMNC = 36 - 3 = 32 ( cm2 )
b) Không rõ đề ...
Bạn Doraeiga ơi bn trả lời sai mất rồi. Cô mk chữa k đúng với đáp số của bạn.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Vũ Thị Hương Giang - Toán lớp 5 - Học toán với OnlineMath
minh da hoc lop ? roi ban a
diện tích hình tam giác BEF là
26,4 : 2 : 2 = 6,6cm2