Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Menelaus :
\(\frac{AE}{CE}\).\(\frac{AD}{BD}\).\(\frac{BF}{CF}\)= 1
Mà AE = CE, AD = 1/3BD
=> BF/CF = 3
=> CF = 1/2 BC
A B D C F E
Vì DF//AB (gt) . Áp dụng định lý Talet ta có : \(\frac{AF}{AC}=\frac{BD}{BC}\)(1)
Vì DE//AC (gt) . Áp dụng định lý Talet ta có : \(\frac{AE}{AB}=\frac{CD}{BC}\)(2)
Từ (1);(2) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BD+CD}{BC}=\frac{BC}{BC}=1\)(Đpcm)
Tự vẽ hình nhé Nữ hoàng sến súa là ta
Lấy K là trung điểm của AB. Nối K với E,K và C. Từ đó ta thấy D là trung điểm của AK
Do \(KEKE\)là đường trung bình tam giác \(ABCABC\)nên KE // BCKE // BC và KE=12BCKE=12BC
Lại có \(DEDE\)là đường trung bình tam giác \(AKCAKC\)nên DE // KCDE // KC
Ta thấy \(\Delta KEC\)và \(\Delta FCE\)có:
+ Chung CE
+ \(\widehat{KEC}=\widehat{FCE}\)( so le trong )
+ \(\widehat{ADE}=\widehat{ACK}\)( đồng vị ) ( mà \(\widehat{ADE}=\widehat{CEF}\Rightarrow\widehat{CEF}=\widehat{ACK}\))
\(\Rightarrow\Delta KEC=\Delta FCE\)( g.c.g ) \(\Rightarrow CF=EK\)
Mà \(EK=\frac{1}{2}BC\Rightarrow CF=\frac{1}{2}BC\)
Vậy \(CF=\frac{1}{2}BC\left(đpcm\right)\)
Mình không biết vẽ hình khi trả lời nên bạn tự vẽ nhé
Đầu tiên chứng minh \(NE=\frac{1}{6}AN\)
Qua E kẻ đường thẳng song song BF cắt AC tại K
Theo ta-lét ta có:
\(\frac{FK}{FC}=\frac{BE}{BC}=\frac{1}{3}\)=>\(\frac{FK}{ÀF}=\frac{1}{6}=\frac{NE}{AN}\)
Từ E,N,C kẻ các đường cao tới AB lần lượt là H,G,I
Theo talet ta có
\(\frac{EH}{CI}=\frac{BE}{BC}=\frac{1}{3},\frac{NG}{EH}=\frac{AN}{AE}=\frac{6}{7}\)
=> \(\frac{NG}{CI}=\frac{2}{7}\)=> \(\frac{NG.AB}{CI.AB}=\frac{2}{7}\)
=> \(\frac{S_{ABN}}{S_{ABC}}=\frac{2}{7}\)
Tương tự \(\frac{S_{BPC}}{S_{ABC}}=\frac{2}{7}\),\(\frac{S_{AMC}}{S_{ABC}}=\frac{2}{7}\)
=> \(S_{MNP}=S_{ABC}-S_{AMC}-S_{ABN}-S_{BCP}=\frac{1}{7}S_{ABC}\)
Vậy \(S_{MNP}=\frac{1}{7}S_{ABC}\)